THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY

Let $\mathcal{C}$ be a fusion category over an algebraically closed field $\mathbb{k}$ of arbitrary characteristic. Two numerical invariants of $\mathcal{C}$ , that is, the Casimir number and the determinant of $\mathcal{C}$ are considered in this paper. These two numbers are both positive integers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2021-05, Vol.63 (2), p.438-450
Hauptverfasser: WANG, ZHIHUA, LIU, GONGXIANG, LI, LIBIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 2
container_start_page 438
container_title Glasgow mathematical journal
container_volume 63
creator WANG, ZHIHUA
LIU, GONGXIANG
LI, LIBIN
description Let $\mathcal{C}$ be a fusion category over an algebraically closed field $\mathbb{k}$ of arbitrary characteristic. Two numerical invariants of $\mathcal{C}$ , that is, the Casimir number and the determinant of $\mathcal{C}$ are considered in this paper. These two numbers are both positive integers and admit the property that the Grothendieck algebra $(\mathcal{C})\otimes_{\mathbb{Z}}K$ over any field K is semisimple if and only if any of these numbers is not zero in K. This shows that these two numbers have the same prime factors. If moreover $\mathcal{C}$ is pivotal, it gives a numerical criterion that $\mathcal{C}$ is nondegenerate if and only if any of these numbers is not zero in $\mathbb{k}$ . For the case that $\mathcal{C}$ is a spherical fusion category over the field $\mathbb{C}$ of complex numbers, these two numbers and the Frobenius–Schur exponent of $\mathcal{C}$ share the same prime factors. This may be thought of as another version of the Cauchy theorem for spherical fusion categories.
doi_str_mv 10.1017/S0017089520000294
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512575098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089520000294</cupid><sourcerecordid>2512575098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-e2e0a88a36453dc4723420e59b54e258dae78c68cdef098f7a22d18b29da3a653</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUTBWP0B3hY8R_cjm-ziKbZJG2gSyAfoKWySjbRYU3fbg__eDS14EOcww8x7b4Z5ANxj9IgRDp5KZDPighFkgwjvAjjY84XLkHi9BM4EuxN-DW6M2dqW2s4Bz9UqgvOwTNKkgFmdvkQFDLMFnMaLqIqKNMnCrIJ5DEMY12WSZ5ZeRcu8eLsFV4P8MOruXGegjqNqvnLX-TKZh2u3I744uIooJDmX1PcY7TsvINQjSDHRMk8RxnupAt75vOvVgAQfAklIj3lLRC-p9BmdgYfT3r0ev47KHJrteNSf9mRDGCYssD9yy8InVqdHY7Qamr3e7KT-bjBqJo-aPx5ZDT1r5K7Vm_5d_a7-X_UDgdphGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512575098</pqid></control><display><type>article</type><title>THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY</title><source>Cambridge University Press Journals Complete</source><creator>WANG, ZHIHUA ; LIU, GONGXIANG ; LI, LIBIN</creator><creatorcontrib>WANG, ZHIHUA ; LIU, GONGXIANG ; LI, LIBIN</creatorcontrib><description>Let $\mathcal{C}$ be a fusion category over an algebraically closed field $\mathbb{k}$ of arbitrary characteristic. Two numerical invariants of $\mathcal{C}$ , that is, the Casimir number and the determinant of $\mathcal{C}$ are considered in this paper. These two numbers are both positive integers and admit the property that the Grothendieck algebra $(\mathcal{C})\otimes_{\mathbb{Z}}K$ over any field K is semisimple if and only if any of these numbers is not zero in K. This shows that these two numbers have the same prime factors. If moreover $\mathcal{C}$ is pivotal, it gives a numerical criterion that $\mathcal{C}$ is nondegenerate if and only if any of these numbers is not zero in $\mathbb{k}$ . For the case that $\mathcal{C}$ is a spherical fusion category over the field $\mathbb{C}$ of complex numbers, these two numbers and the Frobenius–Schur exponent of $\mathcal{C}$ share the same prime factors. This may be thought of as another version of the Cauchy theorem for spherical fusion categories.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089520000294</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Categories ; Complex numbers ; Numbers</subject><ispartof>Glasgow mathematical journal, 2021-05, Vol.63 (2), p.438-450</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-e2e0a88a36453dc4723420e59b54e258dae78c68cdef098f7a22d18b29da3a653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089520000294/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids></links><search><creatorcontrib>WANG, ZHIHUA</creatorcontrib><creatorcontrib>LIU, GONGXIANG</creatorcontrib><creatorcontrib>LI, LIBIN</creatorcontrib><title>THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>Let $\mathcal{C}$ be a fusion category over an algebraically closed field $\mathbb{k}$ of arbitrary characteristic. Two numerical invariants of $\mathcal{C}$ , that is, the Casimir number and the determinant of $\mathcal{C}$ are considered in this paper. These two numbers are both positive integers and admit the property that the Grothendieck algebra $(\mathcal{C})\otimes_{\mathbb{Z}}K$ over any field K is semisimple if and only if any of these numbers is not zero in K. This shows that these two numbers have the same prime factors. If moreover $\mathcal{C}$ is pivotal, it gives a numerical criterion that $\mathcal{C}$ is nondegenerate if and only if any of these numbers is not zero in $\mathbb{k}$ . For the case that $\mathcal{C}$ is a spherical fusion category over the field $\mathbb{C}$ of complex numbers, these two numbers and the Frobenius–Schur exponent of $\mathcal{C}$ share the same prime factors. This may be thought of as another version of the Cauchy theorem for spherical fusion categories.</description><subject>Algebra</subject><subject>Categories</subject><subject>Complex numbers</subject><subject>Numbers</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1Lw0AQXUTBWP0B3hY8R_cjm-ziKbZJG2gSyAfoKWySjbRYU3fbg__eDS14EOcww8x7b4Z5ANxj9IgRDp5KZDPighFkgwjvAjjY84XLkHi9BM4EuxN-DW6M2dqW2s4Bz9UqgvOwTNKkgFmdvkQFDLMFnMaLqIqKNMnCrIJ5DEMY12WSZ5ZeRcu8eLsFV4P8MOruXGegjqNqvnLX-TKZh2u3I744uIooJDmX1PcY7TsvINQjSDHRMk8RxnupAt75vOvVgAQfAklIj3lLRC-p9BmdgYfT3r0ev47KHJrteNSf9mRDGCYssD9yy8InVqdHY7Qamr3e7KT-bjBqJo-aPx5ZDT1r5K7Vm_5d_a7-X_UDgdphGA</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>WANG, ZHIHUA</creator><creator>LIU, GONGXIANG</creator><creator>LI, LIBIN</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202105</creationdate><title>THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY</title><author>WANG, ZHIHUA ; LIU, GONGXIANG ; LI, LIBIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-e2e0a88a36453dc4723420e59b54e258dae78c68cdef098f7a22d18b29da3a653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Categories</topic><topic>Complex numbers</topic><topic>Numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, ZHIHUA</creatorcontrib><creatorcontrib>LIU, GONGXIANG</creatorcontrib><creatorcontrib>LI, LIBIN</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, ZHIHUA</au><au>LIU, GONGXIANG</au><au>LI, LIBIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2021-05</date><risdate>2021</risdate><volume>63</volume><issue>2</issue><spage>438</spage><epage>450</epage><pages>438-450</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>Let $\mathcal{C}$ be a fusion category over an algebraically closed field $\mathbb{k}$ of arbitrary characteristic. Two numerical invariants of $\mathcal{C}$ , that is, the Casimir number and the determinant of $\mathcal{C}$ are considered in this paper. These two numbers are both positive integers and admit the property that the Grothendieck algebra $(\mathcal{C})\otimes_{\mathbb{Z}}K$ over any field K is semisimple if and only if any of these numbers is not zero in K. This shows that these two numbers have the same prime factors. If moreover $\mathcal{C}$ is pivotal, it gives a numerical criterion that $\mathcal{C}$ is nondegenerate if and only if any of these numbers is not zero in $\mathbb{k}$ . For the case that $\mathcal{C}$ is a spherical fusion category over the field $\mathbb{C}$ of complex numbers, these two numbers and the Frobenius–Schur exponent of $\mathcal{C}$ share the same prime factors. This may be thought of as another version of the Cauchy theorem for spherical fusion categories.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089520000294</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 2021-05, Vol.63 (2), p.438-450
issn 0017-0895
1469-509X
language eng
recordid cdi_proquest_journals_2512575098
source Cambridge University Press Journals Complete
subjects Algebra
Categories
Complex numbers
Numbers
title THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20CASIMIR%20NUMBER%20AND%20THE%20DETERMINANT%20OF%20A%20FUSION%20CATEGORY&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=WANG,%20ZHIHUA&rft.date=2021-05&rft.volume=63&rft.issue=2&rft.spage=438&rft.epage=450&rft.pages=438-450&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089520000294&rft_dat=%3Cproquest_cross%3E2512575098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512575098&rft_id=info:pmid/&rft_cupid=10_1017_S0017089520000294&rfr_iscdi=true