THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY
Let $\mathcal{C}$ be a fusion category over an algebraically closed field $\mathbb{k}$ of arbitrary characteristic. Two numerical invariants of $\mathcal{C}$ , that is, the Casimir number and the determinant of $\mathcal{C}$ are considered in this paper. These two numbers are both positive integers...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2021-05, Vol.63 (2), p.438-450 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\mathcal{C}$
be a fusion category over an algebraically closed field
$\mathbb{k}$
of arbitrary characteristic. Two numerical invariants of
$\mathcal{C}$
, that is, the Casimir number and the determinant of
$\mathcal{C}$
are considered in this paper. These two numbers are both positive integers and admit the property that the Grothendieck algebra
$(\mathcal{C})\otimes_{\mathbb{Z}}K$
over any field K is semisimple if and only if any of these numbers is not zero in K. This shows that these two numbers have the same prime factors. If moreover
$\mathcal{C}$
is pivotal, it gives a numerical criterion that
$\mathcal{C}$
is nondegenerate if and only if any of these numbers is not zero in
$\mathbb{k}$
. For the case that
$\mathcal{C}$
is a spherical fusion category over the field
$\mathbb{C}$
of complex numbers, these two numbers and the Frobenius–Schur exponent of
$\mathcal{C}$
share the same prime factors. This may be thought of as another version of the Cauchy theorem for spherical fusion categories. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089520000294 |