Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure

Purpose This study compared characteristics of different animal manure and examined non-parametric multivariate analysis tools’ suitability for their data mining. This can provide data and methodology support for scientific research and utilization of animal manure raw materials’ characteristics. Me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste and biomass valorization 2021-05, Vol.12 (5), p.2343-2355
Hauptverfasser: Wang, Xinlei, Yang, Zengling, Liu, Xian, Huang, Guangqun, Xiao, Weihua, Han, Lujia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2355
container_issue 5
container_start_page 2343
container_title Waste and biomass valorization
container_volume 12
creator Wang, Xinlei
Yang, Zengling
Liu, Xian
Huang, Guangqun
Xiao, Weihua
Han, Lujia
description Purpose This study compared characteristics of different animal manure and examined non-parametric multivariate analysis tools’ suitability for their data mining. This can provide data and methodology support for scientific research and utilization of animal manure raw materials’ characteristics. Methods Distribution profile testing, statistical calculation, and Spearman correlation analysis—using characteristics of 788 animal manure samples of layer, broiler, pig, dairy, and beef, with fertilizer nutrient compositions, proximate compositions, ultimate compositions, and calorific values—were conducted. Latent associations between different animal manure types’ characteristics were examined through five non-parametric multivariate analyses. Results All samples’ physicochemical characteristics samples showed different non-normal distributions except potassium. Volatile matter (VM), fixed carbon (FC), ash, carbon, hydrogen, oxygen, and higher/lower heating value (HHV/LHV) were correlated, and nitrogen was positively correlated with phosphorus, potassium, and sulfur. Non-parametric principal component analysis (PCA), non-parametric exploratory factor analysis (EFA), hierarchical cluster analysis (HCA), and non-metric multidimensional scaling (NMDS) obtained similar results: VM, FC, carbon, hydrogen, oxygen, HHV, and LHV had associated attributes (“energy utilization”); phosphorus, potassium, ash, nitrogen, and sulfur had intrinsic associated attributes (“fertilizer utilization”). Conclusions Animal manure characteristics should be mined and analyzed using non-parametric statistical analysis methods. Non-parametric PCA, non-parametric EFA, HCA, and NMDS are suitable for this purpose. Graphic Abstract
doi_str_mv 10.1007/s12649-020-01178-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512395919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512395919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8d72db88a143547a46988a895d9d40ab40641850b463b57b7327f023743c650e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWLR_wFXAdTTPycyyTOsDWt0ouAuZmUxNmWZqkhZb_PFGR3Tn6j443-XcA8AFwVcEY3kdCM14gTDFCBMic3Q4AiOSS4loJl6Of3tOTsE4hBXGmBKSUyZH4KN81V7X0Xgboq0D1K6BD71Dm7Rem-htDRfbLtqd9lZHA6c6ariwzrolnDjd7YMdoLJfJ8aG3sG-hbP3aFywO9Pt4TQVH2xrTZMQu9YdXGi39eYcnLS6C2b8U8_A883sqbxD88fb-3IyRzUTWUR5I2lT5bkmnAkuNc-KNOSFaIqGY11xnF7LBa54xiohK8mobHF6j7M6E9iwM3A53N34_m1rQlSrfuuT-aCoIJQVoiBFUtFBVfs-BG9atfHJrN8rgtVX0GoIWqWg1XfQ6pAgNkAhid3S-L_T_1Cf57CBuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512395919</pqid></control><display><type>article</type><title>Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure</title><source>SpringerLink Journals</source><creator>Wang, Xinlei ; Yang, Zengling ; Liu, Xian ; Huang, Guangqun ; Xiao, Weihua ; Han, Lujia</creator><creatorcontrib>Wang, Xinlei ; Yang, Zengling ; Liu, Xian ; Huang, Guangqun ; Xiao, Weihua ; Han, Lujia</creatorcontrib><description>Purpose This study compared characteristics of different animal manure and examined non-parametric multivariate analysis tools’ suitability for their data mining. This can provide data and methodology support for scientific research and utilization of animal manure raw materials’ characteristics. Methods Distribution profile testing, statistical calculation, and Spearman correlation analysis—using characteristics of 788 animal manure samples of layer, broiler, pig, dairy, and beef, with fertilizer nutrient compositions, proximate compositions, ultimate compositions, and calorific values—were conducted. Latent associations between different animal manure types’ characteristics were examined through five non-parametric multivariate analyses. Results All samples’ physicochemical characteristics samples showed different non-normal distributions except potassium. Volatile matter (VM), fixed carbon (FC), ash, carbon, hydrogen, oxygen, and higher/lower heating value (HHV/LHV) were correlated, and nitrogen was positively correlated with phosphorus, potassium, and sulfur. Non-parametric principal component analysis (PCA), non-parametric exploratory factor analysis (EFA), hierarchical cluster analysis (HCA), and non-metric multidimensional scaling (NMDS) obtained similar results: VM, FC, carbon, hydrogen, oxygen, HHV, and LHV had associated attributes (“energy utilization”); phosphorus, potassium, ash, nitrogen, and sulfur had intrinsic associated attributes (“fertilizer utilization”). Conclusions Animal manure characteristics should be mined and analyzed using non-parametric statistical analysis methods. Non-parametric PCA, non-parametric EFA, HCA, and NMDS are suitable for this purpose. Graphic Abstract</description><identifier>ISSN: 1877-2641</identifier><identifier>EISSN: 1877-265X</identifier><identifier>DOI: 10.1007/s12649-020-01178-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal manures ; Ashes ; Calorific value ; Carbon ; Cluster analysis ; Composition ; Correlation analysis ; Data mining ; Energy utilization ; Engineering ; Environment ; Environmental Engineering/Biotechnology ; Factor analysis ; Fertilizers ; Industrial Pollution Prevention ; Manures ; Multidimensional scaling ; Multivariate analysis ; Nitrogen ; Nonparametric statistics ; Original Paper ; Oxygen ; Phosphorus ; Potassium ; Principal components analysis ; Raw materials ; Renewable and Green Energy ; Samples ; Statistical analysis ; Statistical methods ; Statistics ; Sulfur ; Utilization ; Waste Management/Waste Technology</subject><ispartof>Waste and biomass valorization, 2021-05, Vol.12 (5), p.2343-2355</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8d72db88a143547a46988a895d9d40ab40641850b463b57b7327f023743c650e3</citedby><cites>FETCH-LOGICAL-c356t-8d72db88a143547a46988a895d9d40ab40641850b463b57b7327f023743c650e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12649-020-01178-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12649-020-01178-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Xinlei</creatorcontrib><creatorcontrib>Yang, Zengling</creatorcontrib><creatorcontrib>Liu, Xian</creatorcontrib><creatorcontrib>Huang, Guangqun</creatorcontrib><creatorcontrib>Xiao, Weihua</creatorcontrib><creatorcontrib>Han, Lujia</creatorcontrib><title>Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure</title><title>Waste and biomass valorization</title><addtitle>Waste Biomass Valor</addtitle><description>Purpose This study compared characteristics of different animal manure and examined non-parametric multivariate analysis tools’ suitability for their data mining. This can provide data and methodology support for scientific research and utilization of animal manure raw materials’ characteristics. Methods Distribution profile testing, statistical calculation, and Spearman correlation analysis—using characteristics of 788 animal manure samples of layer, broiler, pig, dairy, and beef, with fertilizer nutrient compositions, proximate compositions, ultimate compositions, and calorific values—were conducted. Latent associations between different animal manure types’ characteristics were examined through five non-parametric multivariate analyses. Results All samples’ physicochemical characteristics samples showed different non-normal distributions except potassium. Volatile matter (VM), fixed carbon (FC), ash, carbon, hydrogen, oxygen, and higher/lower heating value (HHV/LHV) were correlated, and nitrogen was positively correlated with phosphorus, potassium, and sulfur. Non-parametric principal component analysis (PCA), non-parametric exploratory factor analysis (EFA), hierarchical cluster analysis (HCA), and non-metric multidimensional scaling (NMDS) obtained similar results: VM, FC, carbon, hydrogen, oxygen, HHV, and LHV had associated attributes (“energy utilization”); phosphorus, potassium, ash, nitrogen, and sulfur had intrinsic associated attributes (“fertilizer utilization”). Conclusions Animal manure characteristics should be mined and analyzed using non-parametric statistical analysis methods. Non-parametric PCA, non-parametric EFA, HCA, and NMDS are suitable for this purpose. Graphic Abstract</description><subject>Animal manures</subject><subject>Ashes</subject><subject>Calorific value</subject><subject>Carbon</subject><subject>Cluster analysis</subject><subject>Composition</subject><subject>Correlation analysis</subject><subject>Data mining</subject><subject>Energy utilization</subject><subject>Engineering</subject><subject>Environment</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Factor analysis</subject><subject>Fertilizers</subject><subject>Industrial Pollution Prevention</subject><subject>Manures</subject><subject>Multidimensional scaling</subject><subject>Multivariate analysis</subject><subject>Nitrogen</subject><subject>Nonparametric statistics</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Phosphorus</subject><subject>Potassium</subject><subject>Principal components analysis</subject><subject>Raw materials</subject><subject>Renewable and Green Energy</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Sulfur</subject><subject>Utilization</subject><subject>Waste Management/Waste Technology</subject><issn>1877-2641</issn><issn>1877-265X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWLR_wFXAdTTPycyyTOsDWt0ouAuZmUxNmWZqkhZb_PFGR3Tn6j443-XcA8AFwVcEY3kdCM14gTDFCBMic3Q4AiOSS4loJl6Of3tOTsE4hBXGmBKSUyZH4KN81V7X0Xgboq0D1K6BD71Dm7Rem-htDRfbLtqd9lZHA6c6ariwzrolnDjd7YMdoLJfJ8aG3sG-hbP3aFywO9Pt4TQVH2xrTZMQu9YdXGi39eYcnLS6C2b8U8_A883sqbxD88fb-3IyRzUTWUR5I2lT5bkmnAkuNc-KNOSFaIqGY11xnF7LBa54xiohK8mobHF6j7M6E9iwM3A53N34_m1rQlSrfuuT-aCoIJQVoiBFUtFBVfs-BG9atfHJrN8rgtVX0GoIWqWg1XfQ6pAgNkAhid3S-L_T_1Cf57CBuA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Wang, Xinlei</creator><creator>Yang, Zengling</creator><creator>Liu, Xian</creator><creator>Huang, Guangqun</creator><creator>Xiao, Weihua</creator><creator>Han, Lujia</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure</title><author>Wang, Xinlei ; Yang, Zengling ; Liu, Xian ; Huang, Guangqun ; Xiao, Weihua ; Han, Lujia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8d72db88a143547a46988a895d9d40ab40641850b463b57b7327f023743c650e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal manures</topic><topic>Ashes</topic><topic>Calorific value</topic><topic>Carbon</topic><topic>Cluster analysis</topic><topic>Composition</topic><topic>Correlation analysis</topic><topic>Data mining</topic><topic>Energy utilization</topic><topic>Engineering</topic><topic>Environment</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Factor analysis</topic><topic>Fertilizers</topic><topic>Industrial Pollution Prevention</topic><topic>Manures</topic><topic>Multidimensional scaling</topic><topic>Multivariate analysis</topic><topic>Nitrogen</topic><topic>Nonparametric statistics</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Phosphorus</topic><topic>Potassium</topic><topic>Principal components analysis</topic><topic>Raw materials</topic><topic>Renewable and Green Energy</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Sulfur</topic><topic>Utilization</topic><topic>Waste Management/Waste Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinlei</creatorcontrib><creatorcontrib>Yang, Zengling</creatorcontrib><creatorcontrib>Liu, Xian</creatorcontrib><creatorcontrib>Huang, Guangqun</creatorcontrib><creatorcontrib>Xiao, Weihua</creatorcontrib><creatorcontrib>Han, Lujia</creatorcontrib><collection>CrossRef</collection><jtitle>Waste and biomass valorization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinlei</au><au>Yang, Zengling</au><au>Liu, Xian</au><au>Huang, Guangqun</au><au>Xiao, Weihua</au><au>Han, Lujia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure</atitle><jtitle>Waste and biomass valorization</jtitle><stitle>Waste Biomass Valor</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>12</volume><issue>5</issue><spage>2343</spage><epage>2355</epage><pages>2343-2355</pages><issn>1877-2641</issn><eissn>1877-265X</eissn><abstract>Purpose This study compared characteristics of different animal manure and examined non-parametric multivariate analysis tools’ suitability for their data mining. This can provide data and methodology support for scientific research and utilization of animal manure raw materials’ characteristics. Methods Distribution profile testing, statistical calculation, and Spearman correlation analysis—using characteristics of 788 animal manure samples of layer, broiler, pig, dairy, and beef, with fertilizer nutrient compositions, proximate compositions, ultimate compositions, and calorific values—were conducted. Latent associations between different animal manure types’ characteristics were examined through five non-parametric multivariate analyses. Results All samples’ physicochemical characteristics samples showed different non-normal distributions except potassium. Volatile matter (VM), fixed carbon (FC), ash, carbon, hydrogen, oxygen, and higher/lower heating value (HHV/LHV) were correlated, and nitrogen was positively correlated with phosphorus, potassium, and sulfur. Non-parametric principal component analysis (PCA), non-parametric exploratory factor analysis (EFA), hierarchical cluster analysis (HCA), and non-metric multidimensional scaling (NMDS) obtained similar results: VM, FC, carbon, hydrogen, oxygen, HHV, and LHV had associated attributes (“energy utilization”); phosphorus, potassium, ash, nitrogen, and sulfur had intrinsic associated attributes (“fertilizer utilization”). Conclusions Animal manure characteristics should be mined and analyzed using non-parametric statistical analysis methods. Non-parametric PCA, non-parametric EFA, HCA, and NMDS are suitable for this purpose. Graphic Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12649-020-01178-z</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1877-2641
ispartof Waste and biomass valorization, 2021-05, Vol.12 (5), p.2343-2355
issn 1877-2641
1877-265X
language eng
recordid cdi_proquest_journals_2512395919
source SpringerLink Journals
subjects Animal manures
Ashes
Calorific value
Carbon
Cluster analysis
Composition
Correlation analysis
Data mining
Energy utilization
Engineering
Environment
Environmental Engineering/Biotechnology
Factor analysis
Fertilizers
Industrial Pollution Prevention
Manures
Multidimensional scaling
Multivariate analysis
Nitrogen
Nonparametric statistics
Original Paper
Oxygen
Phosphorus
Potassium
Principal components analysis
Raw materials
Renewable and Green Energy
Samples
Statistical analysis
Statistical methods
Statistics
Sulfur
Utilization
Waste Management/Waste Technology
title Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20and%20Non-parametric%20Multivariate%20Data%20Mining%20Analysis%20and%20Comparison%20of%20Extensively%20Diversified%20Animal%20Manure&rft.jtitle=Waste%20and%20biomass%20valorization&rft.au=Wang,%20Xinlei&rft.date=2021-05-01&rft.volume=12&rft.issue=5&rft.spage=2343&rft.epage=2355&rft.pages=2343-2355&rft.issn=1877-2641&rft.eissn=1877-265X&rft_id=info:doi/10.1007/s12649-020-01178-z&rft_dat=%3Cproquest_cross%3E2512395919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512395919&rft_id=info:pmid/&rfr_iscdi=true