Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure
Purpose This study compared characteristics of different animal manure and examined non-parametric multivariate analysis tools’ suitability for their data mining. This can provide data and methodology support for scientific research and utilization of animal manure raw materials’ characteristics. Me...
Gespeichert in:
Veröffentlicht in: | Waste and biomass valorization 2021-05, Vol.12 (5), p.2343-2355 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2355 |
---|---|
container_issue | 5 |
container_start_page | 2343 |
container_title | Waste and biomass valorization |
container_volume | 12 |
creator | Wang, Xinlei Yang, Zengling Liu, Xian Huang, Guangqun Xiao, Weihua Han, Lujia |
description | Purpose
This study compared characteristics of different animal manure and examined non-parametric multivariate analysis tools’ suitability for their data mining. This can provide data and methodology support for scientific research and utilization of animal manure raw materials’ characteristics.
Methods
Distribution profile testing, statistical calculation, and Spearman correlation analysis—using characteristics of 788 animal manure samples of layer, broiler, pig, dairy, and beef, with fertilizer nutrient compositions, proximate compositions, ultimate compositions, and calorific values—were conducted. Latent associations between different animal manure types’ characteristics were examined through five non-parametric multivariate analyses.
Results
All samples’ physicochemical characteristics samples showed different non-normal distributions except potassium. Volatile matter (VM), fixed carbon (FC), ash, carbon, hydrogen, oxygen, and higher/lower heating value (HHV/LHV) were correlated, and nitrogen was positively correlated with phosphorus, potassium, and sulfur. Non-parametric principal component analysis (PCA), non-parametric exploratory factor analysis (EFA), hierarchical cluster analysis (HCA), and non-metric multidimensional scaling (NMDS) obtained similar results: VM, FC, carbon, hydrogen, oxygen, HHV, and LHV had associated attributes (“energy utilization”); phosphorus, potassium, ash, nitrogen, and sulfur had intrinsic associated attributes (“fertilizer utilization”).
Conclusions
Animal manure characteristics should be mined and analyzed using non-parametric statistical analysis methods. Non-parametric PCA, non-parametric EFA, HCA, and NMDS are suitable for this purpose.
Graphic Abstract |
doi_str_mv | 10.1007/s12649-020-01178-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512395919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512395919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8d72db88a143547a46988a895d9d40ab40641850b463b57b7327f023743c650e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWLR_wFXAdTTPycyyTOsDWt0ouAuZmUxNmWZqkhZb_PFGR3Tn6j443-XcA8AFwVcEY3kdCM14gTDFCBMic3Q4AiOSS4loJl6Of3tOTsE4hBXGmBKSUyZH4KN81V7X0Xgboq0D1K6BD71Dm7Rem-htDRfbLtqd9lZHA6c6ariwzrolnDjd7YMdoLJfJ8aG3sG-hbP3aFywO9Pt4TQVH2xrTZMQu9YdXGi39eYcnLS6C2b8U8_A883sqbxD88fb-3IyRzUTWUR5I2lT5bkmnAkuNc-KNOSFaIqGY11xnF7LBa54xiohK8mobHF6j7M6E9iwM3A53N34_m1rQlSrfuuT-aCoIJQVoiBFUtFBVfs-BG9atfHJrN8rgtVX0GoIWqWg1XfQ6pAgNkAhid3S-L_T_1Cf57CBuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512395919</pqid></control><display><type>article</type><title>Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure</title><source>SpringerLink Journals</source><creator>Wang, Xinlei ; Yang, Zengling ; Liu, Xian ; Huang, Guangqun ; Xiao, Weihua ; Han, Lujia</creator><creatorcontrib>Wang, Xinlei ; Yang, Zengling ; Liu, Xian ; Huang, Guangqun ; Xiao, Weihua ; Han, Lujia</creatorcontrib><description>Purpose
This study compared characteristics of different animal manure and examined non-parametric multivariate analysis tools’ suitability for their data mining. This can provide data and methodology support for scientific research and utilization of animal manure raw materials’ characteristics.
Methods
Distribution profile testing, statistical calculation, and Spearman correlation analysis—using characteristics of 788 animal manure samples of layer, broiler, pig, dairy, and beef, with fertilizer nutrient compositions, proximate compositions, ultimate compositions, and calorific values—were conducted. Latent associations between different animal manure types’ characteristics were examined through five non-parametric multivariate analyses.
Results
All samples’ physicochemical characteristics samples showed different non-normal distributions except potassium. Volatile matter (VM), fixed carbon (FC), ash, carbon, hydrogen, oxygen, and higher/lower heating value (HHV/LHV) were correlated, and nitrogen was positively correlated with phosphorus, potassium, and sulfur. Non-parametric principal component analysis (PCA), non-parametric exploratory factor analysis (EFA), hierarchical cluster analysis (HCA), and non-metric multidimensional scaling (NMDS) obtained similar results: VM, FC, carbon, hydrogen, oxygen, HHV, and LHV had associated attributes (“energy utilization”); phosphorus, potassium, ash, nitrogen, and sulfur had intrinsic associated attributes (“fertilizer utilization”).
Conclusions
Animal manure characteristics should be mined and analyzed using non-parametric statistical analysis methods. Non-parametric PCA, non-parametric EFA, HCA, and NMDS are suitable for this purpose.
Graphic Abstract</description><identifier>ISSN: 1877-2641</identifier><identifier>EISSN: 1877-265X</identifier><identifier>DOI: 10.1007/s12649-020-01178-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal manures ; Ashes ; Calorific value ; Carbon ; Cluster analysis ; Composition ; Correlation analysis ; Data mining ; Energy utilization ; Engineering ; Environment ; Environmental Engineering/Biotechnology ; Factor analysis ; Fertilizers ; Industrial Pollution Prevention ; Manures ; Multidimensional scaling ; Multivariate analysis ; Nitrogen ; Nonparametric statistics ; Original Paper ; Oxygen ; Phosphorus ; Potassium ; Principal components analysis ; Raw materials ; Renewable and Green Energy ; Samples ; Statistical analysis ; Statistical methods ; Statistics ; Sulfur ; Utilization ; Waste Management/Waste Technology</subject><ispartof>Waste and biomass valorization, 2021-05, Vol.12 (5), p.2343-2355</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8d72db88a143547a46988a895d9d40ab40641850b463b57b7327f023743c650e3</citedby><cites>FETCH-LOGICAL-c356t-8d72db88a143547a46988a895d9d40ab40641850b463b57b7327f023743c650e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12649-020-01178-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12649-020-01178-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Xinlei</creatorcontrib><creatorcontrib>Yang, Zengling</creatorcontrib><creatorcontrib>Liu, Xian</creatorcontrib><creatorcontrib>Huang, Guangqun</creatorcontrib><creatorcontrib>Xiao, Weihua</creatorcontrib><creatorcontrib>Han, Lujia</creatorcontrib><title>Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure</title><title>Waste and biomass valorization</title><addtitle>Waste Biomass Valor</addtitle><description>Purpose
This study compared characteristics of different animal manure and examined non-parametric multivariate analysis tools’ suitability for their data mining. This can provide data and methodology support for scientific research and utilization of animal manure raw materials’ characteristics.
Methods
Distribution profile testing, statistical calculation, and Spearman correlation analysis—using characteristics of 788 animal manure samples of layer, broiler, pig, dairy, and beef, with fertilizer nutrient compositions, proximate compositions, ultimate compositions, and calorific values—were conducted. Latent associations between different animal manure types’ characteristics were examined through five non-parametric multivariate analyses.
Results
All samples’ physicochemical characteristics samples showed different non-normal distributions except potassium. Volatile matter (VM), fixed carbon (FC), ash, carbon, hydrogen, oxygen, and higher/lower heating value (HHV/LHV) were correlated, and nitrogen was positively correlated with phosphorus, potassium, and sulfur. Non-parametric principal component analysis (PCA), non-parametric exploratory factor analysis (EFA), hierarchical cluster analysis (HCA), and non-metric multidimensional scaling (NMDS) obtained similar results: VM, FC, carbon, hydrogen, oxygen, HHV, and LHV had associated attributes (“energy utilization”); phosphorus, potassium, ash, nitrogen, and sulfur had intrinsic associated attributes (“fertilizer utilization”).
Conclusions
Animal manure characteristics should be mined and analyzed using non-parametric statistical analysis methods. Non-parametric PCA, non-parametric EFA, HCA, and NMDS are suitable for this purpose.
Graphic Abstract</description><subject>Animal manures</subject><subject>Ashes</subject><subject>Calorific value</subject><subject>Carbon</subject><subject>Cluster analysis</subject><subject>Composition</subject><subject>Correlation analysis</subject><subject>Data mining</subject><subject>Energy utilization</subject><subject>Engineering</subject><subject>Environment</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Factor analysis</subject><subject>Fertilizers</subject><subject>Industrial Pollution Prevention</subject><subject>Manures</subject><subject>Multidimensional scaling</subject><subject>Multivariate analysis</subject><subject>Nitrogen</subject><subject>Nonparametric statistics</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Phosphorus</subject><subject>Potassium</subject><subject>Principal components analysis</subject><subject>Raw materials</subject><subject>Renewable and Green Energy</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Sulfur</subject><subject>Utilization</subject><subject>Waste Management/Waste Technology</subject><issn>1877-2641</issn><issn>1877-265X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWLR_wFXAdTTPycyyTOsDWt0ouAuZmUxNmWZqkhZb_PFGR3Tn6j443-XcA8AFwVcEY3kdCM14gTDFCBMic3Q4AiOSS4loJl6Of3tOTsE4hBXGmBKSUyZH4KN81V7X0Xgboq0D1K6BD71Dm7Rem-htDRfbLtqd9lZHA6c6ariwzrolnDjd7YMdoLJfJ8aG3sG-hbP3aFywO9Pt4TQVH2xrTZMQu9YdXGi39eYcnLS6C2b8U8_A883sqbxD88fb-3IyRzUTWUR5I2lT5bkmnAkuNc-KNOSFaIqGY11xnF7LBa54xiohK8mobHF6j7M6E9iwM3A53N34_m1rQlSrfuuT-aCoIJQVoiBFUtFBVfs-BG9atfHJrN8rgtVX0GoIWqWg1XfQ6pAgNkAhid3S-L_T_1Cf57CBuA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Wang, Xinlei</creator><creator>Yang, Zengling</creator><creator>Liu, Xian</creator><creator>Huang, Guangqun</creator><creator>Xiao, Weihua</creator><creator>Han, Lujia</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure</title><author>Wang, Xinlei ; Yang, Zengling ; Liu, Xian ; Huang, Guangqun ; Xiao, Weihua ; Han, Lujia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8d72db88a143547a46988a895d9d40ab40641850b463b57b7327f023743c650e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal manures</topic><topic>Ashes</topic><topic>Calorific value</topic><topic>Carbon</topic><topic>Cluster analysis</topic><topic>Composition</topic><topic>Correlation analysis</topic><topic>Data mining</topic><topic>Energy utilization</topic><topic>Engineering</topic><topic>Environment</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Factor analysis</topic><topic>Fertilizers</topic><topic>Industrial Pollution Prevention</topic><topic>Manures</topic><topic>Multidimensional scaling</topic><topic>Multivariate analysis</topic><topic>Nitrogen</topic><topic>Nonparametric statistics</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Phosphorus</topic><topic>Potassium</topic><topic>Principal components analysis</topic><topic>Raw materials</topic><topic>Renewable and Green Energy</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Sulfur</topic><topic>Utilization</topic><topic>Waste Management/Waste Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinlei</creatorcontrib><creatorcontrib>Yang, Zengling</creatorcontrib><creatorcontrib>Liu, Xian</creatorcontrib><creatorcontrib>Huang, Guangqun</creatorcontrib><creatorcontrib>Xiao, Weihua</creatorcontrib><creatorcontrib>Han, Lujia</creatorcontrib><collection>CrossRef</collection><jtitle>Waste and biomass valorization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinlei</au><au>Yang, Zengling</au><au>Liu, Xian</au><au>Huang, Guangqun</au><au>Xiao, Weihua</au><au>Han, Lujia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure</atitle><jtitle>Waste and biomass valorization</jtitle><stitle>Waste Biomass Valor</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>12</volume><issue>5</issue><spage>2343</spage><epage>2355</epage><pages>2343-2355</pages><issn>1877-2641</issn><eissn>1877-265X</eissn><abstract>Purpose
This study compared characteristics of different animal manure and examined non-parametric multivariate analysis tools’ suitability for their data mining. This can provide data and methodology support for scientific research and utilization of animal manure raw materials’ characteristics.
Methods
Distribution profile testing, statistical calculation, and Spearman correlation analysis—using characteristics of 788 animal manure samples of layer, broiler, pig, dairy, and beef, with fertilizer nutrient compositions, proximate compositions, ultimate compositions, and calorific values—were conducted. Latent associations between different animal manure types’ characteristics were examined through five non-parametric multivariate analyses.
Results
All samples’ physicochemical characteristics samples showed different non-normal distributions except potassium. Volatile matter (VM), fixed carbon (FC), ash, carbon, hydrogen, oxygen, and higher/lower heating value (HHV/LHV) were correlated, and nitrogen was positively correlated with phosphorus, potassium, and sulfur. Non-parametric principal component analysis (PCA), non-parametric exploratory factor analysis (EFA), hierarchical cluster analysis (HCA), and non-metric multidimensional scaling (NMDS) obtained similar results: VM, FC, carbon, hydrogen, oxygen, HHV, and LHV had associated attributes (“energy utilization”); phosphorus, potassium, ash, nitrogen, and sulfur had intrinsic associated attributes (“fertilizer utilization”).
Conclusions
Animal manure characteristics should be mined and analyzed using non-parametric statistical analysis methods. Non-parametric PCA, non-parametric EFA, HCA, and NMDS are suitable for this purpose.
Graphic Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12649-020-01178-z</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1877-2641 |
ispartof | Waste and biomass valorization, 2021-05, Vol.12 (5), p.2343-2355 |
issn | 1877-2641 1877-265X |
language | eng |
recordid | cdi_proquest_journals_2512395919 |
source | SpringerLink Journals |
subjects | Animal manures Ashes Calorific value Carbon Cluster analysis Composition Correlation analysis Data mining Energy utilization Engineering Environment Environmental Engineering/Biotechnology Factor analysis Fertilizers Industrial Pollution Prevention Manures Multidimensional scaling Multivariate analysis Nitrogen Nonparametric statistics Original Paper Oxygen Phosphorus Potassium Principal components analysis Raw materials Renewable and Green Energy Samples Statistical analysis Statistical methods Statistics Sulfur Utilization Waste Management/Waste Technology |
title | Characteristics and Non-parametric Multivariate Data Mining Analysis and Comparison of Extensively Diversified Animal Manure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20and%20Non-parametric%20Multivariate%20Data%20Mining%20Analysis%20and%20Comparison%20of%20Extensively%20Diversified%20Animal%20Manure&rft.jtitle=Waste%20and%20biomass%20valorization&rft.au=Wang,%20Xinlei&rft.date=2021-05-01&rft.volume=12&rft.issue=5&rft.spage=2343&rft.epage=2355&rft.pages=2343-2355&rft.issn=1877-2641&rft.eissn=1877-265X&rft_id=info:doi/10.1007/s12649-020-01178-z&rft_dat=%3Cproquest_cross%3E2512395919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512395919&rft_id=info:pmid/&rfr_iscdi=true |