Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury
Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2021-05, Vol.42 (7), p.1987-2004 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2004 |
---|---|
container_issue | 7 |
container_start_page | 1987 |
container_title | Human brain mapping |
container_volume | 42 |
creator | Huang, Ming‐Xiong Huang, Charles W. Harrington, Deborah L. Robb‐Swan, Ashley Angeles‐Quinto, Annemarie Nichols, Sharon Huang, Jeffrey W. Le, Lu Rimmele, Carl Matthews, Scott Drake, Angela Song, Tao Ji, Zhengwei Cheng, Chung‐Kuan Shen, Qian Foote, Ericka Lerman, Imanuel Yurgil, Kate A. Hansen, Hayden B. Naviaux, Robert K. Dynes, Robert Baker, Dewleen G. Lee, Roland R. |
description | Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep‐learning neural network method, 3D‐MEGNET, and applied it to resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat‐deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All‐frequency model, which combined delta‐theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D‐MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver‐operator‐characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta‐theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta‐theta and gamma‐band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta‐band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all‐frequency model offered more discriminative power than each frequency‐band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders.
This study developed a novel resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging method, 3D‐MEGNET, using deep learning. The optimized 3D‐MEGNET method combining rs‐MEG data from all frequency bands distinguished individuals with combat‐related mild traumatic brain injury (cmTBI) from combat‐deployed healthy controls with high sensitivity, specificity, and diagnostic accuracy. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and |
doi_str_mv | 10.1002/hbm.25340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2512383410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512383410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-aeec51d87a1e5d31a8883793ab9c8535e77f2e16f1d94a26be9b3565ab500b443</originalsourceid><addsrcrecordid>eNp1kt-O1SAQxhujcf_ohS9gSLxxL7oLBU7LjYlu1DVZY2L0mlA6PeVIoQL1pHc-gs_iI_kkcuy6UROvZmA-fvlmmKJ4RPA5wbi6GNrxvOKU4TvFMcGiLjER9O4h3_BSsJocFScx7jAmhGNyvziilDHBWHVcfH8PMRm3_fH1W0wqARrV1kHy4DRMg7J-G9Q0LCj6Oei1atLcATI5ze_Q3qQBdQBTJlhQwR0uHcxB2RzS3odPqPcBaatiNL3RKhnvkO9RXMYp-TGfNdJ-bFXKiAA2u-jQaGyHUlDzWm-DMg4Zt5vD8qC41ysb4eFNPC0-vnr54fKqvH73-s3l8-tSM0ZxqQA0J11TKwK8o0Q1TUNrQVUrdMMph7ruKyCbnnSCqWrTgmgp33DVcozbjDgtnq3caW5H6DS47MfKKeTWwyK9MvLvijOD3PovssFsg0WTAU9vAMF_nvOc5WiiBmuVAz9HWbG64aIirM7SJ_9Id3ngLrcnK04q2lBGcFadrSodfIwB-lszBMvDJsi8CfLXJmTt4z_d3yp_f30WXKyCvbGw_J8kr168XZE_AXK-xpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512383410</pqid></control><display><type>article</type><title>Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Huang, Ming‐Xiong ; Huang, Charles W. ; Harrington, Deborah L. ; Robb‐Swan, Ashley ; Angeles‐Quinto, Annemarie ; Nichols, Sharon ; Huang, Jeffrey W. ; Le, Lu ; Rimmele, Carl ; Matthews, Scott ; Drake, Angela ; Song, Tao ; Ji, Zhengwei ; Cheng, Chung‐Kuan ; Shen, Qian ; Foote, Ericka ; Lerman, Imanuel ; Yurgil, Kate A. ; Hansen, Hayden B. ; Naviaux, Robert K. ; Dynes, Robert ; Baker, Dewleen G. ; Lee, Roland R.</creator><creatorcontrib>Huang, Ming‐Xiong ; Huang, Charles W. ; Harrington, Deborah L. ; Robb‐Swan, Ashley ; Angeles‐Quinto, Annemarie ; Nichols, Sharon ; Huang, Jeffrey W. ; Le, Lu ; Rimmele, Carl ; Matthews, Scott ; Drake, Angela ; Song, Tao ; Ji, Zhengwei ; Cheng, Chung‐Kuan ; Shen, Qian ; Foote, Ericka ; Lerman, Imanuel ; Yurgil, Kate A. ; Hansen, Hayden B. ; Naviaux, Robert K. ; Dynes, Robert ; Baker, Dewleen G. ; Lee, Roland R.</creatorcontrib><description>Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep‐learning neural network method, 3D‐MEGNET, and applied it to resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat‐deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All‐frequency model, which combined delta‐theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D‐MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver‐operator‐characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta‐theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta‐theta and gamma‐band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta‐band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all‐frequency model offered more discriminative power than each frequency‐band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders.
This study developed a novel resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging method, 3D‐MEGNET, using deep learning. The optimized 3D‐MEGNET method combining rs‐MEG data from all frequency bands distinguished individuals with combat‐related mild traumatic brain injury (cmTBI) from combat‐deployed healthy controls with high sensitivity, specificity, and diagnostic accuracy. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.25340</identifier><identifier>PMID: 33449442</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adult ; Brain ; Brain Concussion - diagnostic imaging ; Brain Concussion - physiopathology ; Cognitive ability ; Combat Disorders - diagnostic imaging ; Combat Disorders - physiopathology ; Connectome - methods ; Connectome - standards ; Deep Learning ; delta rhythm ; Diagnostic systems ; Disabilities ; Emotional behavior ; Frequencies ; gamma rhythm ; Head injuries ; Humans ; machine learning ; Magnetoencephalography ; Magnetoencephalography - methods ; Magnetoencephalography - standards ; Male ; Mathematical analysis ; Mathematical models ; Medical imaging ; Mental disorders ; Military personnel ; military service members ; Neural networks ; Neuroimaging ; Neurological diseases ; neuropsychology ; resting‐state MEG ; Sensitivity and Specificity ; Traumatic brain injury ; Veterans ; Young Adult</subject><ispartof>Human brain mapping, 2021-05, Vol.42 (7), p.1987-2004</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC.</rights><rights>2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-aeec51d87a1e5d31a8883793ab9c8535e77f2e16f1d94a26be9b3565ab500b443</citedby><cites>FETCH-LOGICAL-c4430-aeec51d87a1e5d31a8883793ab9c8535e77f2e16f1d94a26be9b3565ab500b443</cites><orcidid>0000-0001-9658-9080 ; 0000-0002-1025-1298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046098/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046098/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33449442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Ming‐Xiong</creatorcontrib><creatorcontrib>Huang, Charles W.</creatorcontrib><creatorcontrib>Harrington, Deborah L.</creatorcontrib><creatorcontrib>Robb‐Swan, Ashley</creatorcontrib><creatorcontrib>Angeles‐Quinto, Annemarie</creatorcontrib><creatorcontrib>Nichols, Sharon</creatorcontrib><creatorcontrib>Huang, Jeffrey W.</creatorcontrib><creatorcontrib>Le, Lu</creatorcontrib><creatorcontrib>Rimmele, Carl</creatorcontrib><creatorcontrib>Matthews, Scott</creatorcontrib><creatorcontrib>Drake, Angela</creatorcontrib><creatorcontrib>Song, Tao</creatorcontrib><creatorcontrib>Ji, Zhengwei</creatorcontrib><creatorcontrib>Cheng, Chung‐Kuan</creatorcontrib><creatorcontrib>Shen, Qian</creatorcontrib><creatorcontrib>Foote, Ericka</creatorcontrib><creatorcontrib>Lerman, Imanuel</creatorcontrib><creatorcontrib>Yurgil, Kate A.</creatorcontrib><creatorcontrib>Hansen, Hayden B.</creatorcontrib><creatorcontrib>Naviaux, Robert K.</creatorcontrib><creatorcontrib>Dynes, Robert</creatorcontrib><creatorcontrib>Baker, Dewleen G.</creatorcontrib><creatorcontrib>Lee, Roland R.</creatorcontrib><title>Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep‐learning neural network method, 3D‐MEGNET, and applied it to resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat‐deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All‐frequency model, which combined delta‐theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D‐MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver‐operator‐characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta‐theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta‐theta and gamma‐band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta‐band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all‐frequency model offered more discriminative power than each frequency‐band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders.
This study developed a novel resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging method, 3D‐MEGNET, using deep learning. The optimized 3D‐MEGNET method combining rs‐MEG data from all frequency bands distinguished individuals with combat‐related mild traumatic brain injury (cmTBI) from combat‐deployed healthy controls with high sensitivity, specificity, and diagnostic accuracy. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI.</description><subject>Adult</subject><subject>Brain</subject><subject>Brain Concussion - diagnostic imaging</subject><subject>Brain Concussion - physiopathology</subject><subject>Cognitive ability</subject><subject>Combat Disorders - diagnostic imaging</subject><subject>Combat Disorders - physiopathology</subject><subject>Connectome - methods</subject><subject>Connectome - standards</subject><subject>Deep Learning</subject><subject>delta rhythm</subject><subject>Diagnostic systems</subject><subject>Disabilities</subject><subject>Emotional behavior</subject><subject>Frequencies</subject><subject>gamma rhythm</subject><subject>Head injuries</subject><subject>Humans</subject><subject>machine learning</subject><subject>Magnetoencephalography</subject><subject>Magnetoencephalography - methods</subject><subject>Magnetoencephalography - standards</subject><subject>Male</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Military personnel</subject><subject>military service members</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurological diseases</subject><subject>neuropsychology</subject><subject>resting‐state MEG</subject><subject>Sensitivity and Specificity</subject><subject>Traumatic brain injury</subject><subject>Veterans</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kt-O1SAQxhujcf_ohS9gSLxxL7oLBU7LjYlu1DVZY2L0mlA6PeVIoQL1pHc-gs_iI_kkcuy6UROvZmA-fvlmmKJ4RPA5wbi6GNrxvOKU4TvFMcGiLjER9O4h3_BSsJocFScx7jAmhGNyvziilDHBWHVcfH8PMRm3_fH1W0wqARrV1kHy4DRMg7J-G9Q0LCj6Oei1atLcATI5ze_Q3qQBdQBTJlhQwR0uHcxB2RzS3odPqPcBaatiNL3RKhnvkO9RXMYp-TGfNdJ-bFXKiAA2u-jQaGyHUlDzWm-DMg4Zt5vD8qC41ysb4eFNPC0-vnr54fKqvH73-s3l8-tSM0ZxqQA0J11TKwK8o0Q1TUNrQVUrdMMph7ruKyCbnnSCqWrTgmgp33DVcozbjDgtnq3caW5H6DS47MfKKeTWwyK9MvLvijOD3PovssFsg0WTAU9vAMF_nvOc5WiiBmuVAz9HWbG64aIirM7SJ_9Id3ngLrcnK04q2lBGcFadrSodfIwB-lszBMvDJsi8CfLXJmTt4z_d3yp_f30WXKyCvbGw_J8kr168XZE_AXK-xpg</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Huang, Ming‐Xiong</creator><creator>Huang, Charles W.</creator><creator>Harrington, Deborah L.</creator><creator>Robb‐Swan, Ashley</creator><creator>Angeles‐Quinto, Annemarie</creator><creator>Nichols, Sharon</creator><creator>Huang, Jeffrey W.</creator><creator>Le, Lu</creator><creator>Rimmele, Carl</creator><creator>Matthews, Scott</creator><creator>Drake, Angela</creator><creator>Song, Tao</creator><creator>Ji, Zhengwei</creator><creator>Cheng, Chung‐Kuan</creator><creator>Shen, Qian</creator><creator>Foote, Ericka</creator><creator>Lerman, Imanuel</creator><creator>Yurgil, Kate A.</creator><creator>Hansen, Hayden B.</creator><creator>Naviaux, Robert K.</creator><creator>Dynes, Robert</creator><creator>Baker, Dewleen G.</creator><creator>Lee, Roland R.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9658-9080</orcidid><orcidid>https://orcid.org/0000-0002-1025-1298</orcidid></search><sort><creationdate>202105</creationdate><title>Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury</title><author>Huang, Ming‐Xiong ; Huang, Charles W. ; Harrington, Deborah L. ; Robb‐Swan, Ashley ; Angeles‐Quinto, Annemarie ; Nichols, Sharon ; Huang, Jeffrey W. ; Le, Lu ; Rimmele, Carl ; Matthews, Scott ; Drake, Angela ; Song, Tao ; Ji, Zhengwei ; Cheng, Chung‐Kuan ; Shen, Qian ; Foote, Ericka ; Lerman, Imanuel ; Yurgil, Kate A. ; Hansen, Hayden B. ; Naviaux, Robert K. ; Dynes, Robert ; Baker, Dewleen G. ; Lee, Roland R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-aeec51d87a1e5d31a8883793ab9c8535e77f2e16f1d94a26be9b3565ab500b443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Brain</topic><topic>Brain Concussion - diagnostic imaging</topic><topic>Brain Concussion - physiopathology</topic><topic>Cognitive ability</topic><topic>Combat Disorders - diagnostic imaging</topic><topic>Combat Disorders - physiopathology</topic><topic>Connectome - methods</topic><topic>Connectome - standards</topic><topic>Deep Learning</topic><topic>delta rhythm</topic><topic>Diagnostic systems</topic><topic>Disabilities</topic><topic>Emotional behavior</topic><topic>Frequencies</topic><topic>gamma rhythm</topic><topic>Head injuries</topic><topic>Humans</topic><topic>machine learning</topic><topic>Magnetoencephalography</topic><topic>Magnetoencephalography - methods</topic><topic>Magnetoencephalography - standards</topic><topic>Male</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Military personnel</topic><topic>military service members</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurological diseases</topic><topic>neuropsychology</topic><topic>resting‐state MEG</topic><topic>Sensitivity and Specificity</topic><topic>Traumatic brain injury</topic><topic>Veterans</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ming‐Xiong</creatorcontrib><creatorcontrib>Huang, Charles W.</creatorcontrib><creatorcontrib>Harrington, Deborah L.</creatorcontrib><creatorcontrib>Robb‐Swan, Ashley</creatorcontrib><creatorcontrib>Angeles‐Quinto, Annemarie</creatorcontrib><creatorcontrib>Nichols, Sharon</creatorcontrib><creatorcontrib>Huang, Jeffrey W.</creatorcontrib><creatorcontrib>Le, Lu</creatorcontrib><creatorcontrib>Rimmele, Carl</creatorcontrib><creatorcontrib>Matthews, Scott</creatorcontrib><creatorcontrib>Drake, Angela</creatorcontrib><creatorcontrib>Song, Tao</creatorcontrib><creatorcontrib>Ji, Zhengwei</creatorcontrib><creatorcontrib>Cheng, Chung‐Kuan</creatorcontrib><creatorcontrib>Shen, Qian</creatorcontrib><creatorcontrib>Foote, Ericka</creatorcontrib><creatorcontrib>Lerman, Imanuel</creatorcontrib><creatorcontrib>Yurgil, Kate A.</creatorcontrib><creatorcontrib>Hansen, Hayden B.</creatorcontrib><creatorcontrib>Naviaux, Robert K.</creatorcontrib><creatorcontrib>Dynes, Robert</creatorcontrib><creatorcontrib>Baker, Dewleen G.</creatorcontrib><creatorcontrib>Lee, Roland R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ming‐Xiong</au><au>Huang, Charles W.</au><au>Harrington, Deborah L.</au><au>Robb‐Swan, Ashley</au><au>Angeles‐Quinto, Annemarie</au><au>Nichols, Sharon</au><au>Huang, Jeffrey W.</au><au>Le, Lu</au><au>Rimmele, Carl</au><au>Matthews, Scott</au><au>Drake, Angela</au><au>Song, Tao</au><au>Ji, Zhengwei</au><au>Cheng, Chung‐Kuan</au><au>Shen, Qian</au><au>Foote, Ericka</au><au>Lerman, Imanuel</au><au>Yurgil, Kate A.</au><au>Hansen, Hayden B.</au><au>Naviaux, Robert K.</au><au>Dynes, Robert</au><au>Baker, Dewleen G.</au><au>Lee, Roland R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2021-05</date><risdate>2021</risdate><volume>42</volume><issue>7</issue><spage>1987</spage><epage>2004</epage><pages>1987-2004</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep‐learning neural network method, 3D‐MEGNET, and applied it to resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat‐deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All‐frequency model, which combined delta‐theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D‐MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver‐operator‐characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta‐theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta‐theta and gamma‐band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta‐band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all‐frequency model offered more discriminative power than each frequency‐band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders.
This study developed a novel resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging method, 3D‐MEGNET, using deep learning. The optimized 3D‐MEGNET method combining rs‐MEG data from all frequency bands distinguished individuals with combat‐related mild traumatic brain injury (cmTBI) from combat‐deployed healthy controls with high sensitivity, specificity, and diagnostic accuracy. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33449442</pmid><doi>10.1002/hbm.25340</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9658-9080</orcidid><orcidid>https://orcid.org/0000-0002-1025-1298</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2021-05, Vol.42 (7), p.1987-2004 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_proquest_journals_2512383410 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adult Brain Brain Concussion - diagnostic imaging Brain Concussion - physiopathology Cognitive ability Combat Disorders - diagnostic imaging Combat Disorders - physiopathology Connectome - methods Connectome - standards Deep Learning delta rhythm Diagnostic systems Disabilities Emotional behavior Frequencies gamma rhythm Head injuries Humans machine learning Magnetoencephalography Magnetoencephalography - methods Magnetoencephalography - standards Male Mathematical analysis Mathematical models Medical imaging Mental disorders Military personnel military service members Neural networks Neuroimaging Neurological diseases neuropsychology resting‐state MEG Sensitivity and Specificity Traumatic brain injury Veterans Young Adult |
title | Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T14%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting%E2%80%90state%20magnetoencephalography%20source%20magnitude%20imaging%20with%20deep%E2%80%90learning%20neural%20network%20for%20classification%20of%20symptomatic%20combat%E2%80%90related%20mild%20traumatic%20brain%20injury&rft.jtitle=Human%20brain%20mapping&rft.au=Huang,%20Ming%E2%80%90Xiong&rft.date=2021-05&rft.volume=42&rft.issue=7&rft.spage=1987&rft.epage=2004&rft.pages=1987-2004&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.25340&rft_dat=%3Cproquest_pubme%3E2512383410%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512383410&rft_id=info:pmid/33449442&rfr_iscdi=true |