Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury

Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2021-05, Vol.42 (7), p.1987-2004
Hauptverfasser: Huang, Ming‐Xiong, Huang, Charles W., Harrington, Deborah L., Robb‐Swan, Ashley, Angeles‐Quinto, Annemarie, Nichols, Sharon, Huang, Jeffrey W., Le, Lu, Rimmele, Carl, Matthews, Scott, Drake, Angela, Song, Tao, Ji, Zhengwei, Cheng, Chung‐Kuan, Shen, Qian, Foote, Ericka, Lerman, Imanuel, Yurgil, Kate A., Hansen, Hayden B., Naviaux, Robert K., Dynes, Robert, Baker, Dewleen G., Lee, Roland R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2004
container_issue 7
container_start_page 1987
container_title Human brain mapping
container_volume 42
creator Huang, Ming‐Xiong
Huang, Charles W.
Harrington, Deborah L.
Robb‐Swan, Ashley
Angeles‐Quinto, Annemarie
Nichols, Sharon
Huang, Jeffrey W.
Le, Lu
Rimmele, Carl
Matthews, Scott
Drake, Angela
Song, Tao
Ji, Zhengwei
Cheng, Chung‐Kuan
Shen, Qian
Foote, Ericka
Lerman, Imanuel
Yurgil, Kate A.
Hansen, Hayden B.
Naviaux, Robert K.
Dynes, Robert
Baker, Dewleen G.
Lee, Roland R.
description Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep‐learning neural network method, 3D‐MEGNET, and applied it to resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat‐deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All‐frequency model, which combined delta‐theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D‐MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver‐operator‐characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta‐theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta‐theta and gamma‐band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta‐band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all‐frequency model offered more discriminative power than each frequency‐band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders. This study developed a novel resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging method, 3D‐MEGNET, using deep learning. The optimized 3D‐MEGNET method combining rs‐MEG data from all frequency bands distinguished individuals with combat‐related mild traumatic brain injury (cmTBI) from combat‐deployed healthy controls with high sensitivity, specificity, and diagnostic accuracy. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and
doi_str_mv 10.1002/hbm.25340
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2512383410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512383410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-aeec51d87a1e5d31a8883793ab9c8535e77f2e16f1d94a26be9b3565ab500b443</originalsourceid><addsrcrecordid>eNp1kt-O1SAQxhujcf_ohS9gSLxxL7oLBU7LjYlu1DVZY2L0mlA6PeVIoQL1pHc-gs_iI_kkcuy6UROvZmA-fvlmmKJ4RPA5wbi6GNrxvOKU4TvFMcGiLjER9O4h3_BSsJocFScx7jAmhGNyvziilDHBWHVcfH8PMRm3_fH1W0wqARrV1kHy4DRMg7J-G9Q0LCj6Oei1atLcATI5ze_Q3qQBdQBTJlhQwR0uHcxB2RzS3odPqPcBaatiNL3RKhnvkO9RXMYp-TGfNdJ-bFXKiAA2u-jQaGyHUlDzWm-DMg4Zt5vD8qC41ysb4eFNPC0-vnr54fKqvH73-s3l8-tSM0ZxqQA0J11TKwK8o0Q1TUNrQVUrdMMph7ruKyCbnnSCqWrTgmgp33DVcozbjDgtnq3caW5H6DS47MfKKeTWwyK9MvLvijOD3PovssFsg0WTAU9vAMF_nvOc5WiiBmuVAz9HWbG64aIirM7SJ_9Id3ngLrcnK04q2lBGcFadrSodfIwB-lszBMvDJsi8CfLXJmTt4z_d3yp_f30WXKyCvbGw_J8kr168XZE_AXK-xpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512383410</pqid></control><display><type>article</type><title>Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Huang, Ming‐Xiong ; Huang, Charles W. ; Harrington, Deborah L. ; Robb‐Swan, Ashley ; Angeles‐Quinto, Annemarie ; Nichols, Sharon ; Huang, Jeffrey W. ; Le, Lu ; Rimmele, Carl ; Matthews, Scott ; Drake, Angela ; Song, Tao ; Ji, Zhengwei ; Cheng, Chung‐Kuan ; Shen, Qian ; Foote, Ericka ; Lerman, Imanuel ; Yurgil, Kate A. ; Hansen, Hayden B. ; Naviaux, Robert K. ; Dynes, Robert ; Baker, Dewleen G. ; Lee, Roland R.</creator><creatorcontrib>Huang, Ming‐Xiong ; Huang, Charles W. ; Harrington, Deborah L. ; Robb‐Swan, Ashley ; Angeles‐Quinto, Annemarie ; Nichols, Sharon ; Huang, Jeffrey W. ; Le, Lu ; Rimmele, Carl ; Matthews, Scott ; Drake, Angela ; Song, Tao ; Ji, Zhengwei ; Cheng, Chung‐Kuan ; Shen, Qian ; Foote, Ericka ; Lerman, Imanuel ; Yurgil, Kate A. ; Hansen, Hayden B. ; Naviaux, Robert K. ; Dynes, Robert ; Baker, Dewleen G. ; Lee, Roland R.</creatorcontrib><description>Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep‐learning neural network method, 3D‐MEGNET, and applied it to resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat‐deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All‐frequency model, which combined delta‐theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D‐MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver‐operator‐characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta‐theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta‐theta and gamma‐band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta‐band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all‐frequency model offered more discriminative power than each frequency‐band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders. This study developed a novel resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging method, 3D‐MEGNET, using deep learning. The optimized 3D‐MEGNET method combining rs‐MEG data from all frequency bands distinguished individuals with combat‐related mild traumatic brain injury (cmTBI) from combat‐deployed healthy controls with high sensitivity, specificity, and diagnostic accuracy. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.25340</identifier><identifier>PMID: 33449442</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adult ; Brain ; Brain Concussion - diagnostic imaging ; Brain Concussion - physiopathology ; Cognitive ability ; Combat Disorders - diagnostic imaging ; Combat Disorders - physiopathology ; Connectome - methods ; Connectome - standards ; Deep Learning ; delta rhythm ; Diagnostic systems ; Disabilities ; Emotional behavior ; Frequencies ; gamma rhythm ; Head injuries ; Humans ; machine learning ; Magnetoencephalography ; Magnetoencephalography - methods ; Magnetoencephalography - standards ; Male ; Mathematical analysis ; Mathematical models ; Medical imaging ; Mental disorders ; Military personnel ; military service members ; Neural networks ; Neuroimaging ; Neurological diseases ; neuropsychology ; resting‐state MEG ; Sensitivity and Specificity ; Traumatic brain injury ; Veterans ; Young Adult</subject><ispartof>Human brain mapping, 2021-05, Vol.42 (7), p.1987-2004</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC.</rights><rights>2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-aeec51d87a1e5d31a8883793ab9c8535e77f2e16f1d94a26be9b3565ab500b443</citedby><cites>FETCH-LOGICAL-c4430-aeec51d87a1e5d31a8883793ab9c8535e77f2e16f1d94a26be9b3565ab500b443</cites><orcidid>0000-0001-9658-9080 ; 0000-0002-1025-1298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046098/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046098/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33449442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Ming‐Xiong</creatorcontrib><creatorcontrib>Huang, Charles W.</creatorcontrib><creatorcontrib>Harrington, Deborah L.</creatorcontrib><creatorcontrib>Robb‐Swan, Ashley</creatorcontrib><creatorcontrib>Angeles‐Quinto, Annemarie</creatorcontrib><creatorcontrib>Nichols, Sharon</creatorcontrib><creatorcontrib>Huang, Jeffrey W.</creatorcontrib><creatorcontrib>Le, Lu</creatorcontrib><creatorcontrib>Rimmele, Carl</creatorcontrib><creatorcontrib>Matthews, Scott</creatorcontrib><creatorcontrib>Drake, Angela</creatorcontrib><creatorcontrib>Song, Tao</creatorcontrib><creatorcontrib>Ji, Zhengwei</creatorcontrib><creatorcontrib>Cheng, Chung‐Kuan</creatorcontrib><creatorcontrib>Shen, Qian</creatorcontrib><creatorcontrib>Foote, Ericka</creatorcontrib><creatorcontrib>Lerman, Imanuel</creatorcontrib><creatorcontrib>Yurgil, Kate A.</creatorcontrib><creatorcontrib>Hansen, Hayden B.</creatorcontrib><creatorcontrib>Naviaux, Robert K.</creatorcontrib><creatorcontrib>Dynes, Robert</creatorcontrib><creatorcontrib>Baker, Dewleen G.</creatorcontrib><creatorcontrib>Lee, Roland R.</creatorcontrib><title>Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep‐learning neural network method, 3D‐MEGNET, and applied it to resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat‐deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All‐frequency model, which combined delta‐theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D‐MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver‐operator‐characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta‐theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta‐theta and gamma‐band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta‐band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all‐frequency model offered more discriminative power than each frequency‐band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders. This study developed a novel resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging method, 3D‐MEGNET, using deep learning. The optimized 3D‐MEGNET method combining rs‐MEG data from all frequency bands distinguished individuals with combat‐related mild traumatic brain injury (cmTBI) from combat‐deployed healthy controls with high sensitivity, specificity, and diagnostic accuracy. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI.</description><subject>Adult</subject><subject>Brain</subject><subject>Brain Concussion - diagnostic imaging</subject><subject>Brain Concussion - physiopathology</subject><subject>Cognitive ability</subject><subject>Combat Disorders - diagnostic imaging</subject><subject>Combat Disorders - physiopathology</subject><subject>Connectome - methods</subject><subject>Connectome - standards</subject><subject>Deep Learning</subject><subject>delta rhythm</subject><subject>Diagnostic systems</subject><subject>Disabilities</subject><subject>Emotional behavior</subject><subject>Frequencies</subject><subject>gamma rhythm</subject><subject>Head injuries</subject><subject>Humans</subject><subject>machine learning</subject><subject>Magnetoencephalography</subject><subject>Magnetoencephalography - methods</subject><subject>Magnetoencephalography - standards</subject><subject>Male</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Military personnel</subject><subject>military service members</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurological diseases</subject><subject>neuropsychology</subject><subject>resting‐state MEG</subject><subject>Sensitivity and Specificity</subject><subject>Traumatic brain injury</subject><subject>Veterans</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kt-O1SAQxhujcf_ohS9gSLxxL7oLBU7LjYlu1DVZY2L0mlA6PeVIoQL1pHc-gs_iI_kkcuy6UROvZmA-fvlmmKJ4RPA5wbi6GNrxvOKU4TvFMcGiLjER9O4h3_BSsJocFScx7jAmhGNyvziilDHBWHVcfH8PMRm3_fH1W0wqARrV1kHy4DRMg7J-G9Q0LCj6Oei1atLcATI5ze_Q3qQBdQBTJlhQwR0uHcxB2RzS3odPqPcBaatiNL3RKhnvkO9RXMYp-TGfNdJ-bFXKiAA2u-jQaGyHUlDzWm-DMg4Zt5vD8qC41ysb4eFNPC0-vnr54fKqvH73-s3l8-tSM0ZxqQA0J11TKwK8o0Q1TUNrQVUrdMMph7ruKyCbnnSCqWrTgmgp33DVcozbjDgtnq3caW5H6DS47MfKKeTWwyK9MvLvijOD3PovssFsg0WTAU9vAMF_nvOc5WiiBmuVAz9HWbG64aIirM7SJ_9Id3ngLrcnK04q2lBGcFadrSodfIwB-lszBMvDJsi8CfLXJmTt4z_d3yp_f30WXKyCvbGw_J8kr168XZE_AXK-xpg</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Huang, Ming‐Xiong</creator><creator>Huang, Charles W.</creator><creator>Harrington, Deborah L.</creator><creator>Robb‐Swan, Ashley</creator><creator>Angeles‐Quinto, Annemarie</creator><creator>Nichols, Sharon</creator><creator>Huang, Jeffrey W.</creator><creator>Le, Lu</creator><creator>Rimmele, Carl</creator><creator>Matthews, Scott</creator><creator>Drake, Angela</creator><creator>Song, Tao</creator><creator>Ji, Zhengwei</creator><creator>Cheng, Chung‐Kuan</creator><creator>Shen, Qian</creator><creator>Foote, Ericka</creator><creator>Lerman, Imanuel</creator><creator>Yurgil, Kate A.</creator><creator>Hansen, Hayden B.</creator><creator>Naviaux, Robert K.</creator><creator>Dynes, Robert</creator><creator>Baker, Dewleen G.</creator><creator>Lee, Roland R.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9658-9080</orcidid><orcidid>https://orcid.org/0000-0002-1025-1298</orcidid></search><sort><creationdate>202105</creationdate><title>Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury</title><author>Huang, Ming‐Xiong ; Huang, Charles W. ; Harrington, Deborah L. ; Robb‐Swan, Ashley ; Angeles‐Quinto, Annemarie ; Nichols, Sharon ; Huang, Jeffrey W. ; Le, Lu ; Rimmele, Carl ; Matthews, Scott ; Drake, Angela ; Song, Tao ; Ji, Zhengwei ; Cheng, Chung‐Kuan ; Shen, Qian ; Foote, Ericka ; Lerman, Imanuel ; Yurgil, Kate A. ; Hansen, Hayden B. ; Naviaux, Robert K. ; Dynes, Robert ; Baker, Dewleen G. ; Lee, Roland R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-aeec51d87a1e5d31a8883793ab9c8535e77f2e16f1d94a26be9b3565ab500b443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Brain</topic><topic>Brain Concussion - diagnostic imaging</topic><topic>Brain Concussion - physiopathology</topic><topic>Cognitive ability</topic><topic>Combat Disorders - diagnostic imaging</topic><topic>Combat Disorders - physiopathology</topic><topic>Connectome - methods</topic><topic>Connectome - standards</topic><topic>Deep Learning</topic><topic>delta rhythm</topic><topic>Diagnostic systems</topic><topic>Disabilities</topic><topic>Emotional behavior</topic><topic>Frequencies</topic><topic>gamma rhythm</topic><topic>Head injuries</topic><topic>Humans</topic><topic>machine learning</topic><topic>Magnetoencephalography</topic><topic>Magnetoencephalography - methods</topic><topic>Magnetoencephalography - standards</topic><topic>Male</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Military personnel</topic><topic>military service members</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurological diseases</topic><topic>neuropsychology</topic><topic>resting‐state MEG</topic><topic>Sensitivity and Specificity</topic><topic>Traumatic brain injury</topic><topic>Veterans</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ming‐Xiong</creatorcontrib><creatorcontrib>Huang, Charles W.</creatorcontrib><creatorcontrib>Harrington, Deborah L.</creatorcontrib><creatorcontrib>Robb‐Swan, Ashley</creatorcontrib><creatorcontrib>Angeles‐Quinto, Annemarie</creatorcontrib><creatorcontrib>Nichols, Sharon</creatorcontrib><creatorcontrib>Huang, Jeffrey W.</creatorcontrib><creatorcontrib>Le, Lu</creatorcontrib><creatorcontrib>Rimmele, Carl</creatorcontrib><creatorcontrib>Matthews, Scott</creatorcontrib><creatorcontrib>Drake, Angela</creatorcontrib><creatorcontrib>Song, Tao</creatorcontrib><creatorcontrib>Ji, Zhengwei</creatorcontrib><creatorcontrib>Cheng, Chung‐Kuan</creatorcontrib><creatorcontrib>Shen, Qian</creatorcontrib><creatorcontrib>Foote, Ericka</creatorcontrib><creatorcontrib>Lerman, Imanuel</creatorcontrib><creatorcontrib>Yurgil, Kate A.</creatorcontrib><creatorcontrib>Hansen, Hayden B.</creatorcontrib><creatorcontrib>Naviaux, Robert K.</creatorcontrib><creatorcontrib>Dynes, Robert</creatorcontrib><creatorcontrib>Baker, Dewleen G.</creatorcontrib><creatorcontrib>Lee, Roland R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ming‐Xiong</au><au>Huang, Charles W.</au><au>Harrington, Deborah L.</au><au>Robb‐Swan, Ashley</au><au>Angeles‐Quinto, Annemarie</au><au>Nichols, Sharon</au><au>Huang, Jeffrey W.</au><au>Le, Lu</au><au>Rimmele, Carl</au><au>Matthews, Scott</au><au>Drake, Angela</au><au>Song, Tao</au><au>Ji, Zhengwei</au><au>Cheng, Chung‐Kuan</au><au>Shen, Qian</au><au>Foote, Ericka</au><au>Lerman, Imanuel</au><au>Yurgil, Kate A.</au><au>Hansen, Hayden B.</au><au>Naviaux, Robert K.</au><au>Dynes, Robert</au><au>Baker, Dewleen G.</au><au>Lee, Roland R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2021-05</date><risdate>2021</risdate><volume>42</volume><issue>7</issue><spage>1987</spage><epage>2004</epage><pages>1987-2004</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep‐learning neural network method, 3D‐MEGNET, and applied it to resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat‐deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All‐frequency model, which combined delta‐theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D‐MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver‐operator‐characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta‐theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta‐theta and gamma‐band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta‐band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all‐frequency model offered more discriminative power than each frequency‐band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders. This study developed a novel resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging method, 3D‐MEGNET, using deep learning. The optimized 3D‐MEGNET method combining rs‐MEG data from all frequency bands distinguished individuals with combat‐related mild traumatic brain injury (cmTBI) from combat‐deployed healthy controls with high sensitivity, specificity, and diagnostic accuracy. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33449442</pmid><doi>10.1002/hbm.25340</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9658-9080</orcidid><orcidid>https://orcid.org/0000-0002-1025-1298</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2021-05, Vol.42 (7), p.1987-2004
issn 1065-9471
1097-0193
language eng
recordid cdi_proquest_journals_2512383410
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adult
Brain
Brain Concussion - diagnostic imaging
Brain Concussion - physiopathology
Cognitive ability
Combat Disorders - diagnostic imaging
Combat Disorders - physiopathology
Connectome - methods
Connectome - standards
Deep Learning
delta rhythm
Diagnostic systems
Disabilities
Emotional behavior
Frequencies
gamma rhythm
Head injuries
Humans
machine learning
Magnetoencephalography
Magnetoencephalography - methods
Magnetoencephalography - standards
Male
Mathematical analysis
Mathematical models
Medical imaging
Mental disorders
Military personnel
military service members
Neural networks
Neuroimaging
Neurological diseases
neuropsychology
resting‐state MEG
Sensitivity and Specificity
Traumatic brain injury
Veterans
Young Adult
title Resting‐state magnetoencephalography source magnitude imaging with deep‐learning neural network for classification of symptomatic combat‐related mild traumatic brain injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T14%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting%E2%80%90state%20magnetoencephalography%20source%20magnitude%20imaging%20with%20deep%E2%80%90learning%20neural%20network%20for%20classification%20of%20symptomatic%20combat%E2%80%90related%20mild%20traumatic%20brain%20injury&rft.jtitle=Human%20brain%20mapping&rft.au=Huang,%20Ming%E2%80%90Xiong&rft.date=2021-05&rft.volume=42&rft.issue=7&rft.spage=1987&rft.epage=2004&rft.pages=1987-2004&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.25340&rft_dat=%3Cproquest_pubme%3E2512383410%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512383410&rft_id=info:pmid/33449442&rfr_iscdi=true