Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform

Whether the original power data is accurate and complete is a key factor affecting the accuracy of line loss calculations. This research is based on a big data platform to obtain the distribution network model data, topology data, and operating data required for theoretical line loss calculation and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2021-03, Vol.692 (2), p.22069
Hauptverfasser: Lu, Haiqing, Huang, Hongyang, Wu, Jun, Chen, Feng, Lu, Chengyu, Xu, Weiwei, Qian, Qi, Wang, Pengcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 22069
container_title IOP conference series. Earth and environmental science
container_volume 692
creator Lu, Haiqing
Huang, Hongyang
Wu, Jun
Chen, Feng
Lu, Chengyu
Xu, Weiwei
Qian, Qi
Wang, Pengcheng
description Whether the original power data is accurate and complete is a key factor affecting the accuracy of line loss calculations. This research is based on a big data platform to obtain the distribution network model data, topology data, and operating data required for theoretical line loss calculation and technical high loss analysis. The power system analysis algorithm is combined with the big data analysis algorithm to automatically check the distribution network. To locate the high-loss links of the power grid to assist grid planners in their energy-saving and loss-reducing planning and transformation work.
doi_str_mv 10.1088/1755-1315/692/2/022069
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512278208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512278208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2309-f48f1997f887a252f14bffea8832b9ef0e4eb93a7fb2a6be8b1835e016ffb6a3</originalsourceid><addsrcrecordid>eNo9kFtPAjEUhBujiYj-BdPE53V72Uv7CIhoQiJR3puWPQeXwBbbBcO_d8kanmaSmXOS-Qh55OyZM6VSXuZ5wiXP00KLVKRMCFboKzK4BNcXz8pbchfjhrGizKQeEJz43T7ANzSxPgIdNXZ7inWkHunC_0Kgs1BXdNpAWJ_olz3WzZrapqJzHyP9hOqwamvf0LGNUNHO9Efjek1fbGvpYmtb9GF3T27QbiM8_OuQLF-ny8lbMv-YvU9G82QlJNMJZgq51iUqVVqRC-SZQwSrlBROAzLIwGlpS3TCFg6U40rmwHiB6Aorh-Spf7sP_ucAsTUbfwjdpmhEzoUolWCqaxV9axW6FQHQ7EO9s-FkODNnpOZMy5zJmQ6pEaZHKv8AVT9pxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512278208</pqid></control><display><type>article</type><title>Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Lu, Haiqing ; Huang, Hongyang ; Wu, Jun ; Chen, Feng ; Lu, Chengyu ; Xu, Weiwei ; Qian, Qi ; Wang, Pengcheng</creator><creatorcontrib>Lu, Haiqing ; Huang, Hongyang ; Wu, Jun ; Chen, Feng ; Lu, Chengyu ; Xu, Weiwei ; Qian, Qi ; Wang, Pengcheng</creatorcontrib><description>Whether the original power data is accurate and complete is a key factor affecting the accuracy of line loss calculations. This research is based on a big data platform to obtain the distribution network model data, topology data, and operating data required for theoretical line loss calculation and technical high loss analysis. The power system analysis algorithm is combined with the big data analysis algorithm to automatically check the distribution network. To locate the high-loss links of the power grid to assist grid planners in their energy-saving and loss-reducing planning and transformation work.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/692/2/022069</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Big Data ; Data analysis ; Electric power grids ; Energy conservation ; Loss reduction ; Systems analysis ; Topology</subject><ispartof>IOP conference series. Earth and environmental science, 2021-03, Vol.692 (2), p.22069</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2309-f48f1997f887a252f14bffea8832b9ef0e4eb93a7fb2a6be8b1835e016ffb6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lu, Haiqing</creatorcontrib><creatorcontrib>Huang, Hongyang</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Lu, Chengyu</creatorcontrib><creatorcontrib>Xu, Weiwei</creatorcontrib><creatorcontrib>Qian, Qi</creatorcontrib><creatorcontrib>Wang, Pengcheng</creatorcontrib><title>Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform</title><title>IOP conference series. Earth and environmental science</title><description>Whether the original power data is accurate and complete is a key factor affecting the accuracy of line loss calculations. This research is based on a big data platform to obtain the distribution network model data, topology data, and operating data required for theoretical line loss calculation and technical high loss analysis. The power system analysis algorithm is combined with the big data analysis algorithm to automatically check the distribution network. To locate the high-loss links of the power grid to assist grid planners in their energy-saving and loss-reducing planning and transformation work.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Data analysis</subject><subject>Electric power grids</subject><subject>Energy conservation</subject><subject>Loss reduction</subject><subject>Systems analysis</subject><subject>Topology</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kFtPAjEUhBujiYj-BdPE53V72Uv7CIhoQiJR3puWPQeXwBbbBcO_d8kanmaSmXOS-Qh55OyZM6VSXuZ5wiXP00KLVKRMCFboKzK4BNcXz8pbchfjhrGizKQeEJz43T7ANzSxPgIdNXZ7inWkHunC_0Kgs1BXdNpAWJ_olz3WzZrapqJzHyP9hOqwamvf0LGNUNHO9Efjek1fbGvpYmtb9GF3T27QbiM8_OuQLF-ny8lbMv-YvU9G82QlJNMJZgq51iUqVVqRC-SZQwSrlBROAzLIwGlpS3TCFg6U40rmwHiB6Aorh-Spf7sP_ucAsTUbfwjdpmhEzoUolWCqaxV9axW6FQHQ7EO9s-FkODNnpOZMy5zJmQ6pEaZHKv8AVT9pxQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Lu, Haiqing</creator><creator>Huang, Hongyang</creator><creator>Wu, Jun</creator><creator>Chen, Feng</creator><creator>Lu, Chengyu</creator><creator>Xu, Weiwei</creator><creator>Qian, Qi</creator><creator>Wang, Pengcheng</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20210301</creationdate><title>Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform</title><author>Lu, Haiqing ; Huang, Hongyang ; Wu, Jun ; Chen, Feng ; Lu, Chengyu ; Xu, Weiwei ; Qian, Qi ; Wang, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2309-f48f1997f887a252f14bffea8832b9ef0e4eb93a7fb2a6be8b1835e016ffb6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Data analysis</topic><topic>Electric power grids</topic><topic>Energy conservation</topic><topic>Loss reduction</topic><topic>Systems analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Haiqing</creatorcontrib><creatorcontrib>Huang, Hongyang</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Lu, Chengyu</creatorcontrib><creatorcontrib>Xu, Weiwei</creatorcontrib><creatorcontrib>Qian, Qi</creatorcontrib><creatorcontrib>Wang, Pengcheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Haiqing</au><au>Huang, Hongyang</au><au>Wu, Jun</au><au>Chen, Feng</au><au>Lu, Chengyu</au><au>Xu, Weiwei</au><au>Qian, Qi</au><au>Wang, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>692</volume><issue>2</issue><spage>22069</spage><pages>22069-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Whether the original power data is accurate and complete is a key factor affecting the accuracy of line loss calculations. This research is based on a big data platform to obtain the distribution network model data, topology data, and operating data required for theoretical line loss calculation and technical high loss analysis. The power system analysis algorithm is combined with the big data analysis algorithm to automatically check the distribution network. To locate the high-loss links of the power grid to assist grid planners in their energy-saving and loss-reducing planning and transformation work.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/692/2/022069</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2021-03, Vol.692 (2), p.22069
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2512278208
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Algorithms
Big Data
Data analysis
Electric power grids
Energy conservation
Loss reduction
Systems analysis
Topology
title Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Analysis%20of%20Power%20Grid%20Energy%20Saving%20and%20Loss%20Reduction%20Based%20on%20Power%20Big%20Data%20Platform&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Lu,%20Haiqing&rft.date=2021-03-01&rft.volume=692&rft.issue=2&rft.spage=22069&rft.pages=22069-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/692/2/022069&rft_dat=%3Cproquest_cross%3E2512278208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512278208&rft_id=info:pmid/&rfr_iscdi=true