Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform
Whether the original power data is accurate and complete is a key factor affecting the accuracy of line loss calculations. This research is based on a big data platform to obtain the distribution network model data, topology data, and operating data required for theoretical line loss calculation and...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2021-03, Vol.692 (2), p.22069 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 22069 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 692 |
creator | Lu, Haiqing Huang, Hongyang Wu, Jun Chen, Feng Lu, Chengyu Xu, Weiwei Qian, Qi Wang, Pengcheng |
description | Whether the original power data is accurate and complete is a key factor affecting the accuracy of line loss calculations. This research is based on a big data platform to obtain the distribution network model data, topology data, and operating data required for theoretical line loss calculation and technical high loss analysis. The power system analysis algorithm is combined with the big data analysis algorithm to automatically check the distribution network. To locate the high-loss links of the power grid to assist grid planners in their energy-saving and loss-reducing planning and transformation work. |
doi_str_mv | 10.1088/1755-1315/692/2/022069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512278208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512278208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2309-f48f1997f887a252f14bffea8832b9ef0e4eb93a7fb2a6be8b1835e016ffb6a3</originalsourceid><addsrcrecordid>eNo9kFtPAjEUhBujiYj-BdPE53V72Uv7CIhoQiJR3puWPQeXwBbbBcO_d8kanmaSmXOS-Qh55OyZM6VSXuZ5wiXP00KLVKRMCFboKzK4BNcXz8pbchfjhrGizKQeEJz43T7ANzSxPgIdNXZ7inWkHunC_0Kgs1BXdNpAWJ_olz3WzZrapqJzHyP9hOqwamvf0LGNUNHO9Efjek1fbGvpYmtb9GF3T27QbiM8_OuQLF-ny8lbMv-YvU9G82QlJNMJZgq51iUqVVqRC-SZQwSrlBROAzLIwGlpS3TCFg6U40rmwHiB6Aorh-Spf7sP_ucAsTUbfwjdpmhEzoUolWCqaxV9axW6FQHQ7EO9s-FkODNnpOZMy5zJmQ6pEaZHKv8AVT9pxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512278208</pqid></control><display><type>article</type><title>Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Lu, Haiqing ; Huang, Hongyang ; Wu, Jun ; Chen, Feng ; Lu, Chengyu ; Xu, Weiwei ; Qian, Qi ; Wang, Pengcheng</creator><creatorcontrib>Lu, Haiqing ; Huang, Hongyang ; Wu, Jun ; Chen, Feng ; Lu, Chengyu ; Xu, Weiwei ; Qian, Qi ; Wang, Pengcheng</creatorcontrib><description>Whether the original power data is accurate and complete is a key factor affecting the accuracy of line loss calculations. This research is based on a big data platform to obtain the distribution network model data, topology data, and operating data required for theoretical line loss calculation and technical high loss analysis. The power system analysis algorithm is combined with the big data analysis algorithm to automatically check the distribution network. To locate the high-loss links of the power grid to assist grid planners in their energy-saving and loss-reducing planning and transformation work.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/692/2/022069</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Big Data ; Data analysis ; Electric power grids ; Energy conservation ; Loss reduction ; Systems analysis ; Topology</subject><ispartof>IOP conference series. Earth and environmental science, 2021-03, Vol.692 (2), p.22069</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2309-f48f1997f887a252f14bffea8832b9ef0e4eb93a7fb2a6be8b1835e016ffb6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lu, Haiqing</creatorcontrib><creatorcontrib>Huang, Hongyang</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Lu, Chengyu</creatorcontrib><creatorcontrib>Xu, Weiwei</creatorcontrib><creatorcontrib>Qian, Qi</creatorcontrib><creatorcontrib>Wang, Pengcheng</creatorcontrib><title>Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform</title><title>IOP conference series. Earth and environmental science</title><description>Whether the original power data is accurate and complete is a key factor affecting the accuracy of line loss calculations. This research is based on a big data platform to obtain the distribution network model data, topology data, and operating data required for theoretical line loss calculation and technical high loss analysis. The power system analysis algorithm is combined with the big data analysis algorithm to automatically check the distribution network. To locate the high-loss links of the power grid to assist grid planners in their energy-saving and loss-reducing planning and transformation work.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Data analysis</subject><subject>Electric power grids</subject><subject>Energy conservation</subject><subject>Loss reduction</subject><subject>Systems analysis</subject><subject>Topology</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kFtPAjEUhBujiYj-BdPE53V72Uv7CIhoQiJR3puWPQeXwBbbBcO_d8kanmaSmXOS-Qh55OyZM6VSXuZ5wiXP00KLVKRMCFboKzK4BNcXz8pbchfjhrGizKQeEJz43T7ANzSxPgIdNXZ7inWkHunC_0Kgs1BXdNpAWJ_olz3WzZrapqJzHyP9hOqwamvf0LGNUNHO9Efjek1fbGvpYmtb9GF3T27QbiM8_OuQLF-ny8lbMv-YvU9G82QlJNMJZgq51iUqVVqRC-SZQwSrlBROAzLIwGlpS3TCFg6U40rmwHiB6Aorh-Spf7sP_ucAsTUbfwjdpmhEzoUolWCqaxV9axW6FQHQ7EO9s-FkODNnpOZMy5zJmQ6pEaZHKv8AVT9pxQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Lu, Haiqing</creator><creator>Huang, Hongyang</creator><creator>Wu, Jun</creator><creator>Chen, Feng</creator><creator>Lu, Chengyu</creator><creator>Xu, Weiwei</creator><creator>Qian, Qi</creator><creator>Wang, Pengcheng</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20210301</creationdate><title>Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform</title><author>Lu, Haiqing ; Huang, Hongyang ; Wu, Jun ; Chen, Feng ; Lu, Chengyu ; Xu, Weiwei ; Qian, Qi ; Wang, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2309-f48f1997f887a252f14bffea8832b9ef0e4eb93a7fb2a6be8b1835e016ffb6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Data analysis</topic><topic>Electric power grids</topic><topic>Energy conservation</topic><topic>Loss reduction</topic><topic>Systems analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Haiqing</creatorcontrib><creatorcontrib>Huang, Hongyang</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Lu, Chengyu</creatorcontrib><creatorcontrib>Xu, Weiwei</creatorcontrib><creatorcontrib>Qian, Qi</creatorcontrib><creatorcontrib>Wang, Pengcheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Haiqing</au><au>Huang, Hongyang</au><au>Wu, Jun</au><au>Chen, Feng</au><au>Lu, Chengyu</au><au>Xu, Weiwei</au><au>Qian, Qi</au><au>Wang, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>692</volume><issue>2</issue><spage>22069</spage><pages>22069-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Whether the original power data is accurate and complete is a key factor affecting the accuracy of line loss calculations. This research is based on a big data platform to obtain the distribution network model data, topology data, and operating data required for theoretical line loss calculation and technical high loss analysis. The power system analysis algorithm is combined with the big data analysis algorithm to automatically check the distribution network. To locate the high-loss links of the power grid to assist grid planners in their energy-saving and loss-reducing planning and transformation work.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/692/2/022069</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2021-03, Vol.692 (2), p.22069 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2512278208 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra |
subjects | Algorithms Big Data Data analysis Electric power grids Energy conservation Loss reduction Systems analysis Topology |
title | Comprehensive Analysis of Power Grid Energy Saving and Loss Reduction Based on Power Big Data Platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Analysis%20of%20Power%20Grid%20Energy%20Saving%20and%20Loss%20Reduction%20Based%20on%20Power%20Big%20Data%20Platform&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Lu,%20Haiqing&rft.date=2021-03-01&rft.volume=692&rft.issue=2&rft.spage=22069&rft.pages=22069-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/692/2/022069&rft_dat=%3Cproquest_cross%3E2512278208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512278208&rft_id=info:pmid/&rfr_iscdi=true |