Research on the Application of NLP Artificial Intelligence Tools in University Natural Language Processing

Natural language formal analysis theory has created brilliant achievements on the basis of previous studies. However, with the development of computing power and the advent of the deep learning boom, some people believe that the rule-based rationalist method is outdated, and deep learning that relie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2021-03, Vol.714 (4), p.42018
Hauptverfasser: Yuan, Aihong, Gao, li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 42018
container_title IOP conference series. Earth and environmental science
container_volume 714
creator Yuan, Aihong
Gao, li
description Natural language formal analysis theory has created brilliant achievements on the basis of previous studies. However, with the development of computing power and the advent of the deep learning boom, some people believe that the rule-based rationalist method is outdated, and deep learning that relies on massive data can truly realize artificial intelligence. When traditional natural language is directly transplanted to text language, the short content of natural language will cause data sparseness and result in deviation of calculation results. This paper proposes a new natural language similarity measurement method by using NLP artificial intelligence tools. This method first preprocesses short texts, then builds a complex network model for natural language, calculates the complex network feature values of natural language words, and then uses NLP artificial intelligence tools to calculate the semantic similarity between natural language words, and then combines natural language Semantic similarity is defined to calculate the similarity between natural languages.
doi_str_mv 10.1088/1755-1315/714/4/042018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511973959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511973959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1938-33657dbb25b470d93f2d2cb01aa52e3df7d1fb7de6e03e66ec6be25e64892c343</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QQJe1-ajSdrLMfwYjDlkuw5petpl1LQmreC_t2Oyq3MO5-F94UHokZJnSvI8pUqIhHIqUkWzNEtJxgjNr9Ds8ri-7ETdorsYj4RIlfFiho6fEMEEe8Cdx8MB8KLvW2fN4Ka7q_FmvcWLMLjaWWdavPIDtK1rwFvAu65rI3Ye7737gRDd8Is3ZhjDBK6Nb0bTAN6GzkKMzjf36KY2bYSH_zlH-9eX3fI9WX-8rZaLdWJpwfOEcylUVZZMlJkiVcFrVjFbEmqMYMCrWlW0LlUFEggHKcHKEpgAmeUFszzjc_R0zu1D9z1CHPSxG4OfKjUTlBaKF6KYKHmmbOhiDFDrPrgvE341JfrkVZ-U6ZM-PXnVmT575X8rvWwO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511973959</pqid></control><display><type>article</type><title>Research on the Application of NLP Artificial Intelligence Tools in University Natural Language Processing</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Yuan, Aihong ; Gao, li</creator><creatorcontrib>Yuan, Aihong ; Gao, li</creatorcontrib><description>Natural language formal analysis theory has created brilliant achievements on the basis of previous studies. However, with the development of computing power and the advent of the deep learning boom, some people believe that the rule-based rationalist method is outdated, and deep learning that relies on massive data can truly realize artificial intelligence. When traditional natural language is directly transplanted to text language, the short content of natural language will cause data sparseness and result in deviation of calculation results. This paper proposes a new natural language similarity measurement method by using NLP artificial intelligence tools. This method first preprocesses short texts, then builds a complex network model for natural language, calculates the complex network feature values of natural language words, and then uses NLP artificial intelligence tools to calculate the semantic similarity between natural language words, and then combines natural language Semantic similarity is defined to calculate the similarity between natural languages.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/714/4/042018</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial intelligence ; Deep learning ; Language ; Measurement methods ; Natural language ; Natural language processing ; Semantics ; Service introduction ; Similarity ; Words (language)</subject><ispartof>IOP conference series. Earth and environmental science, 2021-03, Vol.714 (4), p.42018</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1938-33657dbb25b470d93f2d2cb01aa52e3df7d1fb7de6e03e66ec6be25e64892c343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Yuan, Aihong</creatorcontrib><creatorcontrib>Gao, li</creatorcontrib><title>Research on the Application of NLP Artificial Intelligence Tools in University Natural Language Processing</title><title>IOP conference series. Earth and environmental science</title><description>Natural language formal analysis theory has created brilliant achievements on the basis of previous studies. However, with the development of computing power and the advent of the deep learning boom, some people believe that the rule-based rationalist method is outdated, and deep learning that relies on massive data can truly realize artificial intelligence. When traditional natural language is directly transplanted to text language, the short content of natural language will cause data sparseness and result in deviation of calculation results. This paper proposes a new natural language similarity measurement method by using NLP artificial intelligence tools. This method first preprocesses short texts, then builds a complex network model for natural language, calculates the complex network feature values of natural language words, and then uses NLP artificial intelligence tools to calculate the semantic similarity between natural language words, and then combines natural language Semantic similarity is defined to calculate the similarity between natural languages.</description><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Language</subject><subject>Measurement methods</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Semantics</subject><subject>Service introduction</subject><subject>Similarity</subject><subject>Words (language)</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kF1LwzAUhoMoOKd_QQJe1-ajSdrLMfwYjDlkuw5petpl1LQmreC_t2Oyq3MO5-F94UHokZJnSvI8pUqIhHIqUkWzNEtJxgjNr9Ds8ri-7ETdorsYj4RIlfFiho6fEMEEe8Cdx8MB8KLvW2fN4Ka7q_FmvcWLMLjaWWdavPIDtK1rwFvAu65rI3Ye7737gRDd8Is3ZhjDBK6Nb0bTAN6GzkKMzjf36KY2bYSH_zlH-9eX3fI9WX-8rZaLdWJpwfOEcylUVZZMlJkiVcFrVjFbEmqMYMCrWlW0LlUFEggHKcHKEpgAmeUFszzjc_R0zu1D9z1CHPSxG4OfKjUTlBaKF6KYKHmmbOhiDFDrPrgvE341JfrkVZ-U6ZM-PXnVmT575X8rvWwO</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Yuan, Aihong</creator><creator>Gao, li</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20210301</creationdate><title>Research on the Application of NLP Artificial Intelligence Tools in University Natural Language Processing</title><author>Yuan, Aihong ; Gao, li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1938-33657dbb25b470d93f2d2cb01aa52e3df7d1fb7de6e03e66ec6be25e64892c343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Language</topic><topic>Measurement methods</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Semantics</topic><topic>Service introduction</topic><topic>Similarity</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Aihong</creatorcontrib><creatorcontrib>Gao, li</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Aihong</au><au>Gao, li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Application of NLP Artificial Intelligence Tools in University Natural Language Processing</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>714</volume><issue>4</issue><spage>42018</spage><pages>42018-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Natural language formal analysis theory has created brilliant achievements on the basis of previous studies. However, with the development of computing power and the advent of the deep learning boom, some people believe that the rule-based rationalist method is outdated, and deep learning that relies on massive data can truly realize artificial intelligence. When traditional natural language is directly transplanted to text language, the short content of natural language will cause data sparseness and result in deviation of calculation results. This paper proposes a new natural language similarity measurement method by using NLP artificial intelligence tools. This method first preprocesses short texts, then builds a complex network model for natural language, calculates the complex network feature values of natural language words, and then uses NLP artificial intelligence tools to calculate the semantic similarity between natural language words, and then combines natural language Semantic similarity is defined to calculate the similarity between natural languages.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/714/4/042018</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2021-03, Vol.714 (4), p.42018
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2511973959
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Artificial intelligence
Deep learning
Language
Measurement methods
Natural language
Natural language processing
Semantics
Service introduction
Similarity
Words (language)
title Research on the Application of NLP Artificial Intelligence Tools in University Natural Language Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Application%20of%20NLP%20Artificial%20Intelligence%20Tools%20in%20University%20Natural%20Language%20Processing&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Yuan,%20Aihong&rft.date=2021-03-01&rft.volume=714&rft.issue=4&rft.spage=42018&rft.pages=42018-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/714/4/042018&rft_dat=%3Cproquest_cross%3E2511973959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511973959&rft_id=info:pmid/&rfr_iscdi=true