Cumulonimbus cloud prediction based on machine learning approach using radiosonde data in Surabaya, Indonesia
Increase in frequency and strength of cumulonimbus is one of the impacts of climate change. The presence of cumulonimbus usuallyy causes extreme weather. Cumulonimbus can produce heavy rainfalls, tornadoes, turbulences, and other extreme weather events. Upper air conditions have a great effect on th...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2021-04, Vol.724 (1), p.12047 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12047 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 724 |
creator | Putra, R M Fibriantika, E Herawati, H Kusumayanti, Y Afriani, E Hidayanti, A Wiujiana, A Swastiko, W A Andrianto, D |
description | Increase in frequency and strength of cumulonimbus is one of the impacts of climate change. The presence of cumulonimbus usuallyy causes extreme weather. Cumulonimbus can produce heavy rainfalls, tornadoes, turbulences, and other extreme weather events. Upper air conditions have a great effect on the process of cloud growth. Radiosonde observations can be used to predict the presence of cumulonimbus in the short-term period of weather forecast. This study aimed to predict the occurrence of cumulonimbus using radiosonde data based on the machine learning approach. In this study, indices data from upper-air observation were used. The model prediction of radiosonde data was trained using machine learning to predict the presence of cumulonimbus. Based on data processing results, the prediction of cumulonimbus events using radiosonde indices data is good enough when implemented in new test data. The influence of the Convective Available Potential Energy (CAPE) index in the predictor index predicts cumulonimbus. Machine learning model can predict cumulonimbus incidence by 80% in one month testing period when adding the CAPE index. Meanwhile, when not using CAPE, cumulonimbus events’ predicted results only reach 72% of events. The false alarm rate when adding CAPE was 17% and without CAPE was 21%. Based on these results, it can be concluded that the prediction of cumulonimbus cloud events using radiosonde data based on the machine learning approach is sufficiently reliable to be used. |
doi_str_mv | 10.1088/1755-1315/724/1/012047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511970076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511970076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2327-7d767b5171d0a19531bae6de8a2f4d3387b8ceeaef152b53a54efd83a4291f853</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK5-BQl4tTbTNE17lMU_Cwse1HOYNqlmaZOabA777W1Z8TRvZh7zhh8ht8AegNV1DlKIDDiIXBZlDjmDgpXyjKz-F-f_mslLchXjnrFKlrxZkXGTxjR4Z8c2RdoNPmk6BaNtd7De0Raj0XQWI3bf1hk6GAzOui-K0xT8PKQpLm1AbX30Thuq8YDUOvqeArZ4xHu6ddo7Ey1ek4seh2hu_uqafD4_fWxes93by3bzuMu6ghcyk1pWshUgQTOERnBo0VTa1Fj0pea8lm3dGYOmB1G0gqMoTa9rjmXRQF8LviZ3p7vzjz_JxIPa-xTcHKkKAdBIxmQ1u6qTqws-xmB6NQU7YjgqYGpBqxZqaiGoZrQK1Akt_wV0K22e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511970076</pqid></control><display><type>article</type><title>Cumulonimbus cloud prediction based on machine learning approach using radiosonde data in Surabaya, Indonesia</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Putra, R M ; Fibriantika, E ; Herawati, H ; Kusumayanti, Y ; Afriani, E ; Hidayanti, A ; Wiujiana, A ; Swastiko, W A ; Andrianto, D</creator><creatorcontrib>Putra, R M ; Fibriantika, E ; Herawati, H ; Kusumayanti, Y ; Afriani, E ; Hidayanti, A ; Wiujiana, A ; Swastiko, W A ; Andrianto, D</creatorcontrib><description>Increase in frequency and strength of cumulonimbus is one of the impacts of climate change. The presence of cumulonimbus usuallyy causes extreme weather. Cumulonimbus can produce heavy rainfalls, tornadoes, turbulences, and other extreme weather events. Upper air conditions have a great effect on the process of cloud growth. Radiosonde observations can be used to predict the presence of cumulonimbus in the short-term period of weather forecast. This study aimed to predict the occurrence of cumulonimbus using radiosonde data based on the machine learning approach. In this study, indices data from upper-air observation were used. The model prediction of radiosonde data was trained using machine learning to predict the presence of cumulonimbus. Based on data processing results, the prediction of cumulonimbus events using radiosonde indices data is good enough when implemented in new test data. The influence of the Convective Available Potential Energy (CAPE) index in the predictor index predicts cumulonimbus. Machine learning model can predict cumulonimbus incidence by 80% in one month testing period when adding the CAPE index. Meanwhile, when not using CAPE, cumulonimbus events’ predicted results only reach 72% of events. The false alarm rate when adding CAPE was 17% and without CAPE was 21%. Based on these results, it can be concluded that the prediction of cumulonimbus cloud events using radiosonde data based on the machine learning approach is sufficiently reliable to be used.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/724/1/012047</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Climate change ; Cumulonimbus clouds ; Data processing ; Environmental impact ; Extreme weather ; False alarms ; Learning algorithms ; Machine learning ; Potential energy ; Predictions ; Radiosondes ; Tornadoes ; Weather forecasting</subject><ispartof>IOP conference series. Earth and environmental science, 2021-04, Vol.724 (1), p.12047</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2327-7d767b5171d0a19531bae6de8a2f4d3387b8ceeaef152b53a54efd83a4291f853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Putra, R M</creatorcontrib><creatorcontrib>Fibriantika, E</creatorcontrib><creatorcontrib>Herawati, H</creatorcontrib><creatorcontrib>Kusumayanti, Y</creatorcontrib><creatorcontrib>Afriani, E</creatorcontrib><creatorcontrib>Hidayanti, A</creatorcontrib><creatorcontrib>Wiujiana, A</creatorcontrib><creatorcontrib>Swastiko, W A</creatorcontrib><creatorcontrib>Andrianto, D</creatorcontrib><title>Cumulonimbus cloud prediction based on machine learning approach using radiosonde data in Surabaya, Indonesia</title><title>IOP conference series. Earth and environmental science</title><description>Increase in frequency and strength of cumulonimbus is one of the impacts of climate change. The presence of cumulonimbus usuallyy causes extreme weather. Cumulonimbus can produce heavy rainfalls, tornadoes, turbulences, and other extreme weather events. Upper air conditions have a great effect on the process of cloud growth. Radiosonde observations can be used to predict the presence of cumulonimbus in the short-term period of weather forecast. This study aimed to predict the occurrence of cumulonimbus using radiosonde data based on the machine learning approach. In this study, indices data from upper-air observation were used. The model prediction of radiosonde data was trained using machine learning to predict the presence of cumulonimbus. Based on data processing results, the prediction of cumulonimbus events using radiosonde indices data is good enough when implemented in new test data. The influence of the Convective Available Potential Energy (CAPE) index in the predictor index predicts cumulonimbus. Machine learning model can predict cumulonimbus incidence by 80% in one month testing period when adding the CAPE index. Meanwhile, when not using CAPE, cumulonimbus events’ predicted results only reach 72% of events. The false alarm rate when adding CAPE was 17% and without CAPE was 21%. Based on these results, it can be concluded that the prediction of cumulonimbus cloud events using radiosonde data based on the machine learning approach is sufficiently reliable to be used.</description><subject>Climate change</subject><subject>Cumulonimbus clouds</subject><subject>Data processing</subject><subject>Environmental impact</subject><subject>Extreme weather</subject><subject>False alarms</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Potential energy</subject><subject>Predictions</subject><subject>Radiosondes</subject><subject>Tornadoes</subject><subject>Weather forecasting</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE9LxDAQxYMouK5-BQl4tTbTNE17lMU_Cwse1HOYNqlmaZOabA777W1Z8TRvZh7zhh8ht8AegNV1DlKIDDiIXBZlDjmDgpXyjKz-F-f_mslLchXjnrFKlrxZkXGTxjR4Z8c2RdoNPmk6BaNtd7De0Raj0XQWI3bf1hk6GAzOui-K0xT8PKQpLm1AbX30Thuq8YDUOvqeArZ4xHu6ddo7Ey1ek4seh2hu_uqafD4_fWxes93by3bzuMu6ghcyk1pWshUgQTOERnBo0VTa1Fj0pea8lm3dGYOmB1G0gqMoTa9rjmXRQF8LviZ3p7vzjz_JxIPa-xTcHKkKAdBIxmQ1u6qTqws-xmB6NQU7YjgqYGpBqxZqaiGoZrQK1Akt_wV0K22e</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Putra, R M</creator><creator>Fibriantika, E</creator><creator>Herawati, H</creator><creator>Kusumayanti, Y</creator><creator>Afriani, E</creator><creator>Hidayanti, A</creator><creator>Wiujiana, A</creator><creator>Swastiko, W A</creator><creator>Andrianto, D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20210401</creationdate><title>Cumulonimbus cloud prediction based on machine learning approach using radiosonde data in Surabaya, Indonesia</title><author>Putra, R M ; Fibriantika, E ; Herawati, H ; Kusumayanti, Y ; Afriani, E ; Hidayanti, A ; Wiujiana, A ; Swastiko, W A ; Andrianto, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2327-7d767b5171d0a19531bae6de8a2f4d3387b8ceeaef152b53a54efd83a4291f853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Climate change</topic><topic>Cumulonimbus clouds</topic><topic>Data processing</topic><topic>Environmental impact</topic><topic>Extreme weather</topic><topic>False alarms</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Potential energy</topic><topic>Predictions</topic><topic>Radiosondes</topic><topic>Tornadoes</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Putra, R M</creatorcontrib><creatorcontrib>Fibriantika, E</creatorcontrib><creatorcontrib>Herawati, H</creatorcontrib><creatorcontrib>Kusumayanti, Y</creatorcontrib><creatorcontrib>Afriani, E</creatorcontrib><creatorcontrib>Hidayanti, A</creatorcontrib><creatorcontrib>Wiujiana, A</creatorcontrib><creatorcontrib>Swastiko, W A</creatorcontrib><creatorcontrib>Andrianto, D</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Putra, R M</au><au>Fibriantika, E</au><au>Herawati, H</au><au>Kusumayanti, Y</au><au>Afriani, E</au><au>Hidayanti, A</au><au>Wiujiana, A</au><au>Swastiko, W A</au><au>Andrianto, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulonimbus cloud prediction based on machine learning approach using radiosonde data in Surabaya, Indonesia</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>724</volume><issue>1</issue><spage>12047</spage><pages>12047-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Increase in frequency and strength of cumulonimbus is one of the impacts of climate change. The presence of cumulonimbus usuallyy causes extreme weather. Cumulonimbus can produce heavy rainfalls, tornadoes, turbulences, and other extreme weather events. Upper air conditions have a great effect on the process of cloud growth. Radiosonde observations can be used to predict the presence of cumulonimbus in the short-term period of weather forecast. This study aimed to predict the occurrence of cumulonimbus using radiosonde data based on the machine learning approach. In this study, indices data from upper-air observation were used. The model prediction of radiosonde data was trained using machine learning to predict the presence of cumulonimbus. Based on data processing results, the prediction of cumulonimbus events using radiosonde indices data is good enough when implemented in new test data. The influence of the Convective Available Potential Energy (CAPE) index in the predictor index predicts cumulonimbus. Machine learning model can predict cumulonimbus incidence by 80% in one month testing period when adding the CAPE index. Meanwhile, when not using CAPE, cumulonimbus events’ predicted results only reach 72% of events. The false alarm rate when adding CAPE was 17% and without CAPE was 21%. Based on these results, it can be concluded that the prediction of cumulonimbus cloud events using radiosonde data based on the machine learning approach is sufficiently reliable to be used.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/724/1/012047</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2021-04, Vol.724 (1), p.12047 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2511970076 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra |
subjects | Climate change Cumulonimbus clouds Data processing Environmental impact Extreme weather False alarms Learning algorithms Machine learning Potential energy Predictions Radiosondes Tornadoes Weather forecasting |
title | Cumulonimbus cloud prediction based on machine learning approach using radiosonde data in Surabaya, Indonesia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulonimbus%20cloud%20prediction%20based%20on%20machine%20learning%20approach%20using%20radiosonde%20data%20in%20Surabaya,%20Indonesia&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Putra,%20R%20M&rft.date=2021-04-01&rft.volume=724&rft.issue=1&rft.spage=12047&rft.pages=12047-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/724/1/012047&rft_dat=%3Cproquest_cross%3E2511970076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511970076&rft_id=info:pmid/&rfr_iscdi=true |