On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR
Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-05, Vol.176, p.632-641 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | |
container_start_page | 632 |
container_title | Carbon (New York) |
container_volume | 176 |
creator | Inozemtseva, Alina I. Kataev, Elmar Yu Frolov, Alexander S. Amati, Matteo Gregoratti, Luca Beranová, Klára Dieste, Virginia Pérez Escudero, Carlos Fedorov, Alexander Tarasov, Artem V. Usachov, Dmitry Yu Vyalikh, Denis V. Shao-Horn, Yang Itkis, Daniil M. Yashina, Lada V. |
description | Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional groups unavoidably existing on the carbon surface can serve as adsorption sites for ORR intermediates; the presence of some oxygen functionalities gives rise to an increase in the density of electronic states (DOS) at the Fermi level (FL). Both factors should have a positive impact on the electron transfer rate that was demonstrated for ORR in aqueous media. To study the O-groups effect on the aprotic ORR, which is now of interest due to the extensive development of aprotic metal-air batteries, we use model oxidized carbon electrodes (HOPG and single-layer graphene). We demonstrate that oxygen functionalities (epoxy, carbonyl, and lactone) do not affect the rate of one-electron oxygen reduction in aprotic media in the absence of metal cations since their introduction practically does not increase DOS at FL. However, in Li+-containing electrolytes, oxygen groups enhance both the rate of second electron transfer and carbon degradation due to its oxidation by LiO2 yielding carbonate species.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2020.12.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511922931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320311854</els_id><sourcerecordid>2511922931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a1ca885ca202fc7d7587c1ae235d0df4659d50218b01851748650a930a9ee413</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFpmn_oAdBz3b18EO-FEroCwKBkLtQpLUj40qpZJfm76vgnntYlh1mdphB6J6SnBJaPfa5VmHvXc4ISxDLCREXaEFFzTMuGnqJFiRBWcUYv0Y3MfbpLAQtFuiwcXg8ANZqVMNptBorZ7CBLiijRvsNOPgBsG-x_zl14DLt3aiss67DXfDTMWLv8GyPYQA9Bm8AW4edd5n6msBPEW-221t01aohwt3fXqLd68tu9Z6tN28fq-d1pjkvxkxRrYQotUpRWl2buhS1pgoYLw0xbVGVjSkJo2JPqChpXYiqJKrhaQAKypfoYX57DD6Zx1H2fgouOUpWUtow1vAzq5hZOvgYA7TyGOynCidJiTxXKns5Z5LnSiVlMvWXZE-zDFKAbwtBRm3BaTA2pOTSePv_g19j5YEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511922931</pqid></control><display><type>article</type><title>On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR</title><source>Elsevier ScienceDirect Journals</source><creator>Inozemtseva, Alina I. ; Kataev, Elmar Yu ; Frolov, Alexander S. ; Amati, Matteo ; Gregoratti, Luca ; Beranová, Klára ; Dieste, Virginia Pérez ; Escudero, Carlos ; Fedorov, Alexander ; Tarasov, Artem V. ; Usachov, Dmitry Yu ; Vyalikh, Denis V. ; Shao-Horn, Yang ; Itkis, Daniil M. ; Yashina, Lada V.</creator><creatorcontrib>Inozemtseva, Alina I. ; Kataev, Elmar Yu ; Frolov, Alexander S. ; Amati, Matteo ; Gregoratti, Luca ; Beranová, Klára ; Dieste, Virginia Pérez ; Escudero, Carlos ; Fedorov, Alexander ; Tarasov, Artem V. ; Usachov, Dmitry Yu ; Vyalikh, Denis V. ; Shao-Horn, Yang ; Itkis, Daniil M. ; Yashina, Lada V.</creatorcontrib><description>Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional groups unavoidably existing on the carbon surface can serve as adsorption sites for ORR intermediates; the presence of some oxygen functionalities gives rise to an increase in the density of electronic states (DOS) at the Fermi level (FL). Both factors should have a positive impact on the electron transfer rate that was demonstrated for ORR in aqueous media. To study the O-groups effect on the aprotic ORR, which is now of interest due to the extensive development of aprotic metal-air batteries, we use model oxidized carbon electrodes (HOPG and single-layer graphene). We demonstrate that oxygen functionalities (epoxy, carbonyl, and lactone) do not affect the rate of one-electron oxygen reduction in aprotic media in the absence of metal cations since their introduction practically does not increase DOS at FL. However, in Li+-containing electrolytes, oxygen groups enhance both the rate of second electron transfer and carbon degradation due to its oxidation by LiO2 yielding carbonate species.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.12.008</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aqueous solutions ; Carbonyls ; Chemical composition ; Chemicals ; Density of states ; Electrolytes ; Electron states ; Electron transfer ; Electrons ; Energy storage ; Functional groups ; Graphene ; Li–O2 batteries ; Microstructure ; Oxidation ; Oxygen ; Oxygen functionalities ; Oxygen reduction ; Oxygen reduction reactions</subject><ispartof>Carbon (New York), 2021-05, Vol.176, p.632-641</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a1ca885ca202fc7d7587c1ae235d0df4659d50218b01851748650a930a9ee413</citedby><cites>FETCH-LOGICAL-c334t-a1ca885ca202fc7d7587c1ae235d0df4659d50218b01851748650a930a9ee413</cites><orcidid>0000-0003-0390-0007 ; 0000-0003-1016-946X ; 0000-0001-8716-9391 ; 0000-0001-7955-6359 ; 0000-0001-5024-6349 ; 0000-0002-3628-4856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622320311854$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Inozemtseva, Alina I.</creatorcontrib><creatorcontrib>Kataev, Elmar Yu</creatorcontrib><creatorcontrib>Frolov, Alexander S.</creatorcontrib><creatorcontrib>Amati, Matteo</creatorcontrib><creatorcontrib>Gregoratti, Luca</creatorcontrib><creatorcontrib>Beranová, Klára</creatorcontrib><creatorcontrib>Dieste, Virginia Pérez</creatorcontrib><creatorcontrib>Escudero, Carlos</creatorcontrib><creatorcontrib>Fedorov, Alexander</creatorcontrib><creatorcontrib>Tarasov, Artem V.</creatorcontrib><creatorcontrib>Usachov, Dmitry Yu</creatorcontrib><creatorcontrib>Vyalikh, Denis V.</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Itkis, Daniil M.</creatorcontrib><creatorcontrib>Yashina, Lada V.</creatorcontrib><title>On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR</title><title>Carbon (New York)</title><description>Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional groups unavoidably existing on the carbon surface can serve as adsorption sites for ORR intermediates; the presence of some oxygen functionalities gives rise to an increase in the density of electronic states (DOS) at the Fermi level (FL). Both factors should have a positive impact on the electron transfer rate that was demonstrated for ORR in aqueous media. To study the O-groups effect on the aprotic ORR, which is now of interest due to the extensive development of aprotic metal-air batteries, we use model oxidized carbon electrodes (HOPG and single-layer graphene). We demonstrate that oxygen functionalities (epoxy, carbonyl, and lactone) do not affect the rate of one-electron oxygen reduction in aprotic media in the absence of metal cations since their introduction practically does not increase DOS at FL. However, in Li+-containing electrolytes, oxygen groups enhance both the rate of second electron transfer and carbon degradation due to its oxidation by LiO2 yielding carbonate species.
[Display omitted]</description><subject>Aqueous solutions</subject><subject>Carbonyls</subject><subject>Chemical composition</subject><subject>Chemicals</subject><subject>Density of states</subject><subject>Electrolytes</subject><subject>Electron states</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>Li–O2 batteries</subject><subject>Microstructure</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen functionalities</subject><subject>Oxygen reduction</subject><subject>Oxygen reduction reactions</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqwzAQFKWFpmn_oAdBz3b18EO-FEroCwKBkLtQpLUj40qpZJfm76vgnntYlh1mdphB6J6SnBJaPfa5VmHvXc4ISxDLCREXaEFFzTMuGnqJFiRBWcUYv0Y3MfbpLAQtFuiwcXg8ANZqVMNptBorZ7CBLiijRvsNOPgBsG-x_zl14DLt3aiss67DXfDTMWLv8GyPYQA9Bm8AW4edd5n6msBPEW-221t01aohwt3fXqLd68tu9Z6tN28fq-d1pjkvxkxRrYQotUpRWl2buhS1pgoYLw0xbVGVjSkJo2JPqChpXYiqJKrhaQAKypfoYX57DD6Zx1H2fgouOUpWUtow1vAzq5hZOvgYA7TyGOynCidJiTxXKns5Z5LnSiVlMvWXZE-zDFKAbwtBRm3BaTA2pOTSePv_g19j5YEc</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Inozemtseva, Alina I.</creator><creator>Kataev, Elmar Yu</creator><creator>Frolov, Alexander S.</creator><creator>Amati, Matteo</creator><creator>Gregoratti, Luca</creator><creator>Beranová, Klára</creator><creator>Dieste, Virginia Pérez</creator><creator>Escudero, Carlos</creator><creator>Fedorov, Alexander</creator><creator>Tarasov, Artem V.</creator><creator>Usachov, Dmitry Yu</creator><creator>Vyalikh, Denis V.</creator><creator>Shao-Horn, Yang</creator><creator>Itkis, Daniil M.</creator><creator>Yashina, Lada V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0390-0007</orcidid><orcidid>https://orcid.org/0000-0003-1016-946X</orcidid><orcidid>https://orcid.org/0000-0001-8716-9391</orcidid><orcidid>https://orcid.org/0000-0001-7955-6359</orcidid><orcidid>https://orcid.org/0000-0001-5024-6349</orcidid><orcidid>https://orcid.org/0000-0002-3628-4856</orcidid></search><sort><creationdate>202105</creationdate><title>On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR</title><author>Inozemtseva, Alina I. ; Kataev, Elmar Yu ; Frolov, Alexander S. ; Amati, Matteo ; Gregoratti, Luca ; Beranová, Klára ; Dieste, Virginia Pérez ; Escudero, Carlos ; Fedorov, Alexander ; Tarasov, Artem V. ; Usachov, Dmitry Yu ; Vyalikh, Denis V. ; Shao-Horn, Yang ; Itkis, Daniil M. ; Yashina, Lada V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a1ca885ca202fc7d7587c1ae235d0df4659d50218b01851748650a930a9ee413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous solutions</topic><topic>Carbonyls</topic><topic>Chemical composition</topic><topic>Chemicals</topic><topic>Density of states</topic><topic>Electrolytes</topic><topic>Electron states</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>Li–O2 batteries</topic><topic>Microstructure</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen functionalities</topic><topic>Oxygen reduction</topic><topic>Oxygen reduction reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inozemtseva, Alina I.</creatorcontrib><creatorcontrib>Kataev, Elmar Yu</creatorcontrib><creatorcontrib>Frolov, Alexander S.</creatorcontrib><creatorcontrib>Amati, Matteo</creatorcontrib><creatorcontrib>Gregoratti, Luca</creatorcontrib><creatorcontrib>Beranová, Klára</creatorcontrib><creatorcontrib>Dieste, Virginia Pérez</creatorcontrib><creatorcontrib>Escudero, Carlos</creatorcontrib><creatorcontrib>Fedorov, Alexander</creatorcontrib><creatorcontrib>Tarasov, Artem V.</creatorcontrib><creatorcontrib>Usachov, Dmitry Yu</creatorcontrib><creatorcontrib>Vyalikh, Denis V.</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Itkis, Daniil M.</creatorcontrib><creatorcontrib>Yashina, Lada V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inozemtseva, Alina I.</au><au>Kataev, Elmar Yu</au><au>Frolov, Alexander S.</au><au>Amati, Matteo</au><au>Gregoratti, Luca</au><au>Beranová, Klára</au><au>Dieste, Virginia Pérez</au><au>Escudero, Carlos</au><au>Fedorov, Alexander</au><au>Tarasov, Artem V.</au><au>Usachov, Dmitry Yu</au><au>Vyalikh, Denis V.</au><au>Shao-Horn, Yang</au><au>Itkis, Daniil M.</au><au>Yashina, Lada V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR</atitle><jtitle>Carbon (New York)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>176</volume><spage>632</spage><epage>641</epage><pages>632-641</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional groups unavoidably existing on the carbon surface can serve as adsorption sites for ORR intermediates; the presence of some oxygen functionalities gives rise to an increase in the density of electronic states (DOS) at the Fermi level (FL). Both factors should have a positive impact on the electron transfer rate that was demonstrated for ORR in aqueous media. To study the O-groups effect on the aprotic ORR, which is now of interest due to the extensive development of aprotic metal-air batteries, we use model oxidized carbon electrodes (HOPG and single-layer graphene). We demonstrate that oxygen functionalities (epoxy, carbonyl, and lactone) do not affect the rate of one-electron oxygen reduction in aprotic media in the absence of metal cations since their introduction practically does not increase DOS at FL. However, in Li+-containing electrolytes, oxygen groups enhance both the rate of second electron transfer and carbon degradation due to its oxidation by LiO2 yielding carbonate species.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.12.008</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0390-0007</orcidid><orcidid>https://orcid.org/0000-0003-1016-946X</orcidid><orcidid>https://orcid.org/0000-0001-8716-9391</orcidid><orcidid>https://orcid.org/0000-0001-7955-6359</orcidid><orcidid>https://orcid.org/0000-0001-5024-6349</orcidid><orcidid>https://orcid.org/0000-0002-3628-4856</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2021-05, Vol.176, p.632-641 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2511922931 |
source | Elsevier ScienceDirect Journals |
subjects | Aqueous solutions Carbonyls Chemical composition Chemicals Density of states Electrolytes Electron states Electron transfer Electrons Energy storage Functional groups Graphene Li–O2 batteries Microstructure Oxidation Oxygen Oxygen functionalities Oxygen reduction Oxygen reduction reactions |
title | On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20catalytic%20and%20degradative%20role%20of%20oxygen-containing%20groups%20on%20carbon%20electrode%20in%20non-aqueous%20ORR&rft.jtitle=Carbon%20(New%20York)&rft.au=Inozemtseva,%20Alina%20I.&rft.date=2021-05&rft.volume=176&rft.spage=632&rft.epage=641&rft.pages=632-641&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.12.008&rft_dat=%3Cproquest_cross%3E2511922931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511922931&rft_id=info:pmid/&rft_els_id=S0008622320311854&rfr_iscdi=true |