On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR

Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-05, Vol.176, p.632-641
Hauptverfasser: Inozemtseva, Alina I., Kataev, Elmar Yu, Frolov, Alexander S., Amati, Matteo, Gregoratti, Luca, Beranová, Klára, Dieste, Virginia Pérez, Escudero, Carlos, Fedorov, Alexander, Tarasov, Artem V., Usachov, Dmitry Yu, Vyalikh, Denis V., Shao-Horn, Yang, Itkis, Daniil M., Yashina, Lada V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue
container_start_page 632
container_title Carbon (New York)
container_volume 176
creator Inozemtseva, Alina I.
Kataev, Elmar Yu
Frolov, Alexander S.
Amati, Matteo
Gregoratti, Luca
Beranová, Klára
Dieste, Virginia Pérez
Escudero, Carlos
Fedorov, Alexander
Tarasov, Artem V.
Usachov, Dmitry Yu
Vyalikh, Denis V.
Shao-Horn, Yang
Itkis, Daniil M.
Yashina, Lada V.
description Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional groups unavoidably existing on the carbon surface can serve as adsorption sites for ORR intermediates; the presence of some oxygen functionalities gives rise to an increase in the density of electronic states (DOS) at the Fermi level (FL). Both factors should have a positive impact on the electron transfer rate that was demonstrated for ORR in aqueous media. To study the O-groups effect on the aprotic ORR, which is now of interest due to the extensive development of aprotic metal-air batteries, we use model oxidized carbon electrodes (HOPG and single-layer graphene). We demonstrate that oxygen functionalities (epoxy, carbonyl, and lactone) do not affect the rate of one-electron oxygen reduction in aprotic media in the absence of metal cations since their introduction practically does not increase DOS at FL. However, in Li+-containing electrolytes, oxygen groups enhance both the rate of second electron transfer and carbon degradation due to its oxidation by LiO2 yielding carbonate species. [Display omitted]
doi_str_mv 10.1016/j.carbon.2020.12.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511922931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320311854</els_id><sourcerecordid>2511922931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a1ca885ca202fc7d7587c1ae235d0df4659d50218b01851748650a930a9ee413</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFpmn_oAdBz3b18EO-FEroCwKBkLtQpLUj40qpZJfm76vgnntYlh1mdphB6J6SnBJaPfa5VmHvXc4ISxDLCREXaEFFzTMuGnqJFiRBWcUYv0Y3MfbpLAQtFuiwcXg8ANZqVMNptBorZ7CBLiijRvsNOPgBsG-x_zl14DLt3aiss67DXfDTMWLv8GyPYQA9Bm8AW4edd5n6msBPEW-221t01aohwt3fXqLd68tu9Z6tN28fq-d1pjkvxkxRrYQotUpRWl2buhS1pgoYLw0xbVGVjSkJo2JPqChpXYiqJKrhaQAKypfoYX57DD6Zx1H2fgouOUpWUtow1vAzq5hZOvgYA7TyGOynCidJiTxXKns5Z5LnSiVlMvWXZE-zDFKAbwtBRm3BaTA2pOTSePv_g19j5YEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511922931</pqid></control><display><type>article</type><title>On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR</title><source>Elsevier ScienceDirect Journals</source><creator>Inozemtseva, Alina I. ; Kataev, Elmar Yu ; Frolov, Alexander S. ; Amati, Matteo ; Gregoratti, Luca ; Beranová, Klára ; Dieste, Virginia Pérez ; Escudero, Carlos ; Fedorov, Alexander ; Tarasov, Artem V. ; Usachov, Dmitry Yu ; Vyalikh, Denis V. ; Shao-Horn, Yang ; Itkis, Daniil M. ; Yashina, Lada V.</creator><creatorcontrib>Inozemtseva, Alina I. ; Kataev, Elmar Yu ; Frolov, Alexander S. ; Amati, Matteo ; Gregoratti, Luca ; Beranová, Klára ; Dieste, Virginia Pérez ; Escudero, Carlos ; Fedorov, Alexander ; Tarasov, Artem V. ; Usachov, Dmitry Yu ; Vyalikh, Denis V. ; Shao-Horn, Yang ; Itkis, Daniil M. ; Yashina, Lada V.</creatorcontrib><description>Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional groups unavoidably existing on the carbon surface can serve as adsorption sites for ORR intermediates; the presence of some oxygen functionalities gives rise to an increase in the density of electronic states (DOS) at the Fermi level (FL). Both factors should have a positive impact on the electron transfer rate that was demonstrated for ORR in aqueous media. To study the O-groups effect on the aprotic ORR, which is now of interest due to the extensive development of aprotic metal-air batteries, we use model oxidized carbon electrodes (HOPG and single-layer graphene). We demonstrate that oxygen functionalities (epoxy, carbonyl, and lactone) do not affect the rate of one-electron oxygen reduction in aprotic media in the absence of metal cations since their introduction practically does not increase DOS at FL. However, in Li+-containing electrolytes, oxygen groups enhance both the rate of second electron transfer and carbon degradation due to its oxidation by LiO2 yielding carbonate species. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.12.008</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aqueous solutions ; Carbonyls ; Chemical composition ; Chemicals ; Density of states ; Electrolytes ; Electron states ; Electron transfer ; Electrons ; Energy storage ; Functional groups ; Graphene ; Li–O2 batteries ; Microstructure ; Oxidation ; Oxygen ; Oxygen functionalities ; Oxygen reduction ; Oxygen reduction reactions</subject><ispartof>Carbon (New York), 2021-05, Vol.176, p.632-641</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a1ca885ca202fc7d7587c1ae235d0df4659d50218b01851748650a930a9ee413</citedby><cites>FETCH-LOGICAL-c334t-a1ca885ca202fc7d7587c1ae235d0df4659d50218b01851748650a930a9ee413</cites><orcidid>0000-0003-0390-0007 ; 0000-0003-1016-946X ; 0000-0001-8716-9391 ; 0000-0001-7955-6359 ; 0000-0001-5024-6349 ; 0000-0002-3628-4856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622320311854$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Inozemtseva, Alina I.</creatorcontrib><creatorcontrib>Kataev, Elmar Yu</creatorcontrib><creatorcontrib>Frolov, Alexander S.</creatorcontrib><creatorcontrib>Amati, Matteo</creatorcontrib><creatorcontrib>Gregoratti, Luca</creatorcontrib><creatorcontrib>Beranová, Klára</creatorcontrib><creatorcontrib>Dieste, Virginia Pérez</creatorcontrib><creatorcontrib>Escudero, Carlos</creatorcontrib><creatorcontrib>Fedorov, Alexander</creatorcontrib><creatorcontrib>Tarasov, Artem V.</creatorcontrib><creatorcontrib>Usachov, Dmitry Yu</creatorcontrib><creatorcontrib>Vyalikh, Denis V.</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Itkis, Daniil M.</creatorcontrib><creatorcontrib>Yashina, Lada V.</creatorcontrib><title>On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR</title><title>Carbon (New York)</title><description>Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional groups unavoidably existing on the carbon surface can serve as adsorption sites for ORR intermediates; the presence of some oxygen functionalities gives rise to an increase in the density of electronic states (DOS) at the Fermi level (FL). Both factors should have a positive impact on the electron transfer rate that was demonstrated for ORR in aqueous media. To study the O-groups effect on the aprotic ORR, which is now of interest due to the extensive development of aprotic metal-air batteries, we use model oxidized carbon electrodes (HOPG and single-layer graphene). We demonstrate that oxygen functionalities (epoxy, carbonyl, and lactone) do not affect the rate of one-electron oxygen reduction in aprotic media in the absence of metal cations since their introduction practically does not increase DOS at FL. However, in Li+-containing electrolytes, oxygen groups enhance both the rate of second electron transfer and carbon degradation due to its oxidation by LiO2 yielding carbonate species. [Display omitted]</description><subject>Aqueous solutions</subject><subject>Carbonyls</subject><subject>Chemical composition</subject><subject>Chemicals</subject><subject>Density of states</subject><subject>Electrolytes</subject><subject>Electron states</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>Li–O2 batteries</subject><subject>Microstructure</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen functionalities</subject><subject>Oxygen reduction</subject><subject>Oxygen reduction reactions</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqwzAQFKWFpmn_oAdBz3b18EO-FEroCwKBkLtQpLUj40qpZJfm76vgnntYlh1mdphB6J6SnBJaPfa5VmHvXc4ISxDLCREXaEFFzTMuGnqJFiRBWcUYv0Y3MfbpLAQtFuiwcXg8ANZqVMNptBorZ7CBLiijRvsNOPgBsG-x_zl14DLt3aiss67DXfDTMWLv8GyPYQA9Bm8AW4edd5n6msBPEW-221t01aohwt3fXqLd68tu9Z6tN28fq-d1pjkvxkxRrYQotUpRWl2buhS1pgoYLw0xbVGVjSkJo2JPqChpXYiqJKrhaQAKypfoYX57DD6Zx1H2fgouOUpWUtow1vAzq5hZOvgYA7TyGOynCidJiTxXKns5Z5LnSiVlMvWXZE-zDFKAbwtBRm3BaTA2pOTSePv_g19j5YEc</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Inozemtseva, Alina I.</creator><creator>Kataev, Elmar Yu</creator><creator>Frolov, Alexander S.</creator><creator>Amati, Matteo</creator><creator>Gregoratti, Luca</creator><creator>Beranová, Klára</creator><creator>Dieste, Virginia Pérez</creator><creator>Escudero, Carlos</creator><creator>Fedorov, Alexander</creator><creator>Tarasov, Artem V.</creator><creator>Usachov, Dmitry Yu</creator><creator>Vyalikh, Denis V.</creator><creator>Shao-Horn, Yang</creator><creator>Itkis, Daniil M.</creator><creator>Yashina, Lada V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0390-0007</orcidid><orcidid>https://orcid.org/0000-0003-1016-946X</orcidid><orcidid>https://orcid.org/0000-0001-8716-9391</orcidid><orcidid>https://orcid.org/0000-0001-7955-6359</orcidid><orcidid>https://orcid.org/0000-0001-5024-6349</orcidid><orcidid>https://orcid.org/0000-0002-3628-4856</orcidid></search><sort><creationdate>202105</creationdate><title>On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR</title><author>Inozemtseva, Alina I. ; Kataev, Elmar Yu ; Frolov, Alexander S. ; Amati, Matteo ; Gregoratti, Luca ; Beranová, Klára ; Dieste, Virginia Pérez ; Escudero, Carlos ; Fedorov, Alexander ; Tarasov, Artem V. ; Usachov, Dmitry Yu ; Vyalikh, Denis V. ; Shao-Horn, Yang ; Itkis, Daniil M. ; Yashina, Lada V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a1ca885ca202fc7d7587c1ae235d0df4659d50218b01851748650a930a9ee413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous solutions</topic><topic>Carbonyls</topic><topic>Chemical composition</topic><topic>Chemicals</topic><topic>Density of states</topic><topic>Electrolytes</topic><topic>Electron states</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>Li–O2 batteries</topic><topic>Microstructure</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen functionalities</topic><topic>Oxygen reduction</topic><topic>Oxygen reduction reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inozemtseva, Alina I.</creatorcontrib><creatorcontrib>Kataev, Elmar Yu</creatorcontrib><creatorcontrib>Frolov, Alexander S.</creatorcontrib><creatorcontrib>Amati, Matteo</creatorcontrib><creatorcontrib>Gregoratti, Luca</creatorcontrib><creatorcontrib>Beranová, Klára</creatorcontrib><creatorcontrib>Dieste, Virginia Pérez</creatorcontrib><creatorcontrib>Escudero, Carlos</creatorcontrib><creatorcontrib>Fedorov, Alexander</creatorcontrib><creatorcontrib>Tarasov, Artem V.</creatorcontrib><creatorcontrib>Usachov, Dmitry Yu</creatorcontrib><creatorcontrib>Vyalikh, Denis V.</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Itkis, Daniil M.</creatorcontrib><creatorcontrib>Yashina, Lada V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inozemtseva, Alina I.</au><au>Kataev, Elmar Yu</au><au>Frolov, Alexander S.</au><au>Amati, Matteo</au><au>Gregoratti, Luca</au><au>Beranová, Klára</au><au>Dieste, Virginia Pérez</au><au>Escudero, Carlos</au><au>Fedorov, Alexander</au><au>Tarasov, Artem V.</au><au>Usachov, Dmitry Yu</au><au>Vyalikh, Denis V.</au><au>Shao-Horn, Yang</au><au>Itkis, Daniil M.</au><au>Yashina, Lada V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR</atitle><jtitle>Carbon (New York)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>176</volume><spage>632</spage><epage>641</epage><pages>632-641</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional groups unavoidably existing on the carbon surface can serve as adsorption sites for ORR intermediates; the presence of some oxygen functionalities gives rise to an increase in the density of electronic states (DOS) at the Fermi level (FL). Both factors should have a positive impact on the electron transfer rate that was demonstrated for ORR in aqueous media. To study the O-groups effect on the aprotic ORR, which is now of interest due to the extensive development of aprotic metal-air batteries, we use model oxidized carbon electrodes (HOPG and single-layer graphene). We demonstrate that oxygen functionalities (epoxy, carbonyl, and lactone) do not affect the rate of one-electron oxygen reduction in aprotic media in the absence of metal cations since their introduction practically does not increase DOS at FL. However, in Li+-containing electrolytes, oxygen groups enhance both the rate of second electron transfer and carbon degradation due to its oxidation by LiO2 yielding carbonate species. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.12.008</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0390-0007</orcidid><orcidid>https://orcid.org/0000-0003-1016-946X</orcidid><orcidid>https://orcid.org/0000-0001-8716-9391</orcidid><orcidid>https://orcid.org/0000-0001-7955-6359</orcidid><orcidid>https://orcid.org/0000-0001-5024-6349</orcidid><orcidid>https://orcid.org/0000-0002-3628-4856</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2021-05, Vol.176, p.632-641
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2511922931
source Elsevier ScienceDirect Journals
subjects Aqueous solutions
Carbonyls
Chemical composition
Chemicals
Density of states
Electrolytes
Electron states
Electron transfer
Electrons
Energy storage
Functional groups
Graphene
Li–O2 batteries
Microstructure
Oxidation
Oxygen
Oxygen functionalities
Oxygen reduction
Oxygen reduction reactions
title On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20catalytic%20and%20degradative%20role%20of%20oxygen-containing%20groups%20on%20carbon%20electrode%20in%20non-aqueous%20ORR&rft.jtitle=Carbon%20(New%20York)&rft.au=Inozemtseva,%20Alina%20I.&rft.date=2021-05&rft.volume=176&rft.spage=632&rft.epage=641&rft.pages=632-641&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.12.008&rft_dat=%3Cproquest_cross%3E2511922931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511922931&rft_id=info:pmid/&rft_els_id=S0008622320311854&rfr_iscdi=true