Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes

Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-05, Vol.176, p.458-469
Hauptverfasser: Musto, Mattia, Parisse, Pietro, Pachetti, Maria, Memo, Christian, Di Mauro, Giuseppe, Ballesteros, Belen, Lozano, Neus, Kostarelos, Kostas, Casalis, Loredana, Ballerini, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue
container_start_page 458
container_title Carbon (New York)
container_volume 176
creator Musto, Mattia
Parisse, Pietro
Pachetti, Maria
Memo, Christian
Di Mauro, Giuseppe
Ballesteros, Belen
Lozano, Neus
Kostarelos, Kostas
Casalis, Loredana
Ballerini, Laura
description Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functions. The increasing clinical relevance of these signaling systems requires a deeper understanding of MV features, currently limited by both their nanoscale dimensions and the low rate of their constituent release. Hence, to investigate the features of such glial signals, nanotechnology-based approaches and the applications of unconventional, cost-effective tools in generating MVs are needed. Here, small graphene oxide (s-GO) nanoflakes are used to boost MVs shedding from astrocytes in cultures and s-GO generated MVs are compared with those generated by a natural stimulant, namely ATP, by atomic force microscopy, light scattering, attenuated total reflection–fourier transform infra-red and ultraviolet resonance Raman spectroscopy. We also report the ability of both types of MVs, upon acute and transient exposure of patch clamped cultured neurons, to modulate basal synaptic transmission, inducing a stable increase in synaptic activity accompanied by changes in neuronal plasma membrane elastic features. [Display omitted] •Graphene oxide interferes with cell membrane dynamics and enhance astrocytes’ release of MVs.•MVs driven by graphene oxide stimuli display a different protein profile from chemically driven ones.•MVs released upon graphene oxide exposure affect neuronal signaling and membrane stiffness.
doi_str_mv 10.1016/j.carbon.2021.01.142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511922570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321001627</els_id><sourcerecordid>2511922570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b2a89ef98d8a78b48ad01977c36420284b26bdec4bf41f45a6d7fb3232970a053</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywssU6wHSdxNkio4iVVYgGsLT8mrUNe2ElF_x6XsmYzo9HcO6N7ELqmJKWEFrdNapTXQ58ywmhKaEo5O0ELKsosyURFT9GCECKSgrHsHF2E0MSRC8oXyLxtwVrXb_DYqtAp3EGnveoB7yA400LArrezAYv1Hm-8GrcQl8O3s4B71Q91qz5_RTjaYjVzO80-ylWY_GD2E4RLdFarNsDVX1-ij8eH99Vzsn59elndrxOTCTIlmilRQV0JK1QpNBfKElqVpckKHoMJrlmhLRiua05rnqvClrXOWMaqkiiSZ0t0c7w7-uFrhjDJZph9H19KllNaMZaXJKr4UWX8EIKHWo7edcrvJSXygFM28ohTHnBKQmXEGW13RxvEBDsHXgbjoI9gnAczSTu4_w_8AFZqgPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511922570</pqid></control><display><type>article</type><title>Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Musto, Mattia ; Parisse, Pietro ; Pachetti, Maria ; Memo, Christian ; Di Mauro, Giuseppe ; Ballesteros, Belen ; Lozano, Neus ; Kostarelos, Kostas ; Casalis, Loredana ; Ballerini, Laura</creator><creatorcontrib>Musto, Mattia ; Parisse, Pietro ; Pachetti, Maria ; Memo, Christian ; Di Mauro, Giuseppe ; Ballesteros, Belen ; Lozano, Neus ; Kostarelos, Kostas ; Casalis, Loredana ; Ballerini, Laura</creatorcontrib><description>Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functions. The increasing clinical relevance of these signaling systems requires a deeper understanding of MV features, currently limited by both their nanoscale dimensions and the low rate of their constituent release. Hence, to investigate the features of such glial signals, nanotechnology-based approaches and the applications of unconventional, cost-effective tools in generating MVs are needed. Here, small graphene oxide (s-GO) nanoflakes are used to boost MVs shedding from astrocytes in cultures and s-GO generated MVs are compared with those generated by a natural stimulant, namely ATP, by atomic force microscopy, light scattering, attenuated total reflection–fourier transform infra-red and ultraviolet resonance Raman spectroscopy. We also report the ability of both types of MVs, upon acute and transient exposure of patch clamped cultured neurons, to modulate basal synaptic transmission, inducing a stable increase in synaptic activity accompanied by changes in neuronal plasma membrane elastic features. [Display omitted] •Graphene oxide interferes with cell membrane dynamics and enhance astrocytes’ release of MVs.•MVs driven by graphene oxide stimuli display a different protein profile from chemically driven ones.•MVs released upon graphene oxide exposure affect neuronal signaling and membrane stiffness.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.01.142</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Atomic force microscopy and spectroscopy ; Brain ; Cortical neuronal cultures ; Extracellular vesicles ; Fourier transforms ; FTIR-ATR and UVRR spectroscopy ; Graphene ; Graphene oxide ; Light reflection ; Light scattering ; Membranes ; Nanotechnology ; Neurons ; Plasma ; Raman spectroscopy ; Resonance scattering ; Shedding ; Signalling systems ; Synaptic activity</subject><ispartof>Carbon (New York), 2021-05, Vol.176, p.458-469</ispartof><rights>2021 The Author(s)</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b2a89ef98d8a78b48ad01977c36420284b26bdec4bf41f45a6d7fb3232970a053</citedby><cites>FETCH-LOGICAL-c380t-b2a89ef98d8a78b48ad01977c36420284b26bdec4bf41f45a6d7fb3232970a053</cites><orcidid>0000-0003-1926-3700 ; 0000-0001-8420-0787 ; 0000-0002-9026-1743 ; 0000-0002-1307-7475 ; 0000-0001-8924-4906 ; 0000-0002-7420-2778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.01.142$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Musto, Mattia</creatorcontrib><creatorcontrib>Parisse, Pietro</creatorcontrib><creatorcontrib>Pachetti, Maria</creatorcontrib><creatorcontrib>Memo, Christian</creatorcontrib><creatorcontrib>Di Mauro, Giuseppe</creatorcontrib><creatorcontrib>Ballesteros, Belen</creatorcontrib><creatorcontrib>Lozano, Neus</creatorcontrib><creatorcontrib>Kostarelos, Kostas</creatorcontrib><creatorcontrib>Casalis, Loredana</creatorcontrib><creatorcontrib>Ballerini, Laura</creatorcontrib><title>Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes</title><title>Carbon (New York)</title><description>Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functions. The increasing clinical relevance of these signaling systems requires a deeper understanding of MV features, currently limited by both their nanoscale dimensions and the low rate of their constituent release. Hence, to investigate the features of such glial signals, nanotechnology-based approaches and the applications of unconventional, cost-effective tools in generating MVs are needed. Here, small graphene oxide (s-GO) nanoflakes are used to boost MVs shedding from astrocytes in cultures and s-GO generated MVs are compared with those generated by a natural stimulant, namely ATP, by atomic force microscopy, light scattering, attenuated total reflection–fourier transform infra-red and ultraviolet resonance Raman spectroscopy. We also report the ability of both types of MVs, upon acute and transient exposure of patch clamped cultured neurons, to modulate basal synaptic transmission, inducing a stable increase in synaptic activity accompanied by changes in neuronal plasma membrane elastic features. [Display omitted] •Graphene oxide interferes with cell membrane dynamics and enhance astrocytes’ release of MVs.•MVs driven by graphene oxide stimuli display a different protein profile from chemically driven ones.•MVs released upon graphene oxide exposure affect neuronal signaling and membrane stiffness.</description><subject>Atomic force microscopy</subject><subject>Atomic force microscopy and spectroscopy</subject><subject>Brain</subject><subject>Cortical neuronal cultures</subject><subject>Extracellular vesicles</subject><subject>Fourier transforms</subject><subject>FTIR-ATR and UVRR spectroscopy</subject><subject>Graphene</subject><subject>Graphene oxide</subject><subject>Light reflection</subject><subject>Light scattering</subject><subject>Membranes</subject><subject>Nanotechnology</subject><subject>Neurons</subject><subject>Plasma</subject><subject>Raman spectroscopy</subject><subject>Resonance scattering</subject><subject>Shedding</subject><subject>Signalling systems</subject><subject>Synaptic activity</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywssU6wHSdxNkio4iVVYgGsLT8mrUNe2ElF_x6XsmYzo9HcO6N7ELqmJKWEFrdNapTXQ58ywmhKaEo5O0ELKsosyURFT9GCECKSgrHsHF2E0MSRC8oXyLxtwVrXb_DYqtAp3EGnveoB7yA400LArrezAYv1Hm-8GrcQl8O3s4B71Q91qz5_RTjaYjVzO80-ylWY_GD2E4RLdFarNsDVX1-ij8eH99Vzsn59elndrxOTCTIlmilRQV0JK1QpNBfKElqVpckKHoMJrlmhLRiua05rnqvClrXOWMaqkiiSZ0t0c7w7-uFrhjDJZph9H19KllNaMZaXJKr4UWX8EIKHWo7edcrvJSXygFM28ohTHnBKQmXEGW13RxvEBDsHXgbjoI9gnAczSTu4_w_8AFZqgPQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Musto, Mattia</creator><creator>Parisse, Pietro</creator><creator>Pachetti, Maria</creator><creator>Memo, Christian</creator><creator>Di Mauro, Giuseppe</creator><creator>Ballesteros, Belen</creator><creator>Lozano, Neus</creator><creator>Kostarelos, Kostas</creator><creator>Casalis, Loredana</creator><creator>Ballerini, Laura</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1926-3700</orcidid><orcidid>https://orcid.org/0000-0001-8420-0787</orcidid><orcidid>https://orcid.org/0000-0002-9026-1743</orcidid><orcidid>https://orcid.org/0000-0002-1307-7475</orcidid><orcidid>https://orcid.org/0000-0001-8924-4906</orcidid><orcidid>https://orcid.org/0000-0002-7420-2778</orcidid></search><sort><creationdate>202105</creationdate><title>Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes</title><author>Musto, Mattia ; Parisse, Pietro ; Pachetti, Maria ; Memo, Christian ; Di Mauro, Giuseppe ; Ballesteros, Belen ; Lozano, Neus ; Kostarelos, Kostas ; Casalis, Loredana ; Ballerini, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b2a89ef98d8a78b48ad01977c36420284b26bdec4bf41f45a6d7fb3232970a053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopy</topic><topic>Atomic force microscopy and spectroscopy</topic><topic>Brain</topic><topic>Cortical neuronal cultures</topic><topic>Extracellular vesicles</topic><topic>Fourier transforms</topic><topic>FTIR-ATR and UVRR spectroscopy</topic><topic>Graphene</topic><topic>Graphene oxide</topic><topic>Light reflection</topic><topic>Light scattering</topic><topic>Membranes</topic><topic>Nanotechnology</topic><topic>Neurons</topic><topic>Plasma</topic><topic>Raman spectroscopy</topic><topic>Resonance scattering</topic><topic>Shedding</topic><topic>Signalling systems</topic><topic>Synaptic activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musto, Mattia</creatorcontrib><creatorcontrib>Parisse, Pietro</creatorcontrib><creatorcontrib>Pachetti, Maria</creatorcontrib><creatorcontrib>Memo, Christian</creatorcontrib><creatorcontrib>Di Mauro, Giuseppe</creatorcontrib><creatorcontrib>Ballesteros, Belen</creatorcontrib><creatorcontrib>Lozano, Neus</creatorcontrib><creatorcontrib>Kostarelos, Kostas</creatorcontrib><creatorcontrib>Casalis, Loredana</creatorcontrib><creatorcontrib>Ballerini, Laura</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musto, Mattia</au><au>Parisse, Pietro</au><au>Pachetti, Maria</au><au>Memo, Christian</au><au>Di Mauro, Giuseppe</au><au>Ballesteros, Belen</au><au>Lozano, Neus</au><au>Kostarelos, Kostas</au><au>Casalis, Loredana</au><au>Ballerini, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes</atitle><jtitle>Carbon (New York)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>176</volume><spage>458</spage><epage>469</epage><pages>458-469</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functions. The increasing clinical relevance of these signaling systems requires a deeper understanding of MV features, currently limited by both their nanoscale dimensions and the low rate of their constituent release. Hence, to investigate the features of such glial signals, nanotechnology-based approaches and the applications of unconventional, cost-effective tools in generating MVs are needed. Here, small graphene oxide (s-GO) nanoflakes are used to boost MVs shedding from astrocytes in cultures and s-GO generated MVs are compared with those generated by a natural stimulant, namely ATP, by atomic force microscopy, light scattering, attenuated total reflection–fourier transform infra-red and ultraviolet resonance Raman spectroscopy. We also report the ability of both types of MVs, upon acute and transient exposure of patch clamped cultured neurons, to modulate basal synaptic transmission, inducing a stable increase in synaptic activity accompanied by changes in neuronal plasma membrane elastic features. [Display omitted] •Graphene oxide interferes with cell membrane dynamics and enhance astrocytes’ release of MVs.•MVs driven by graphene oxide stimuli display a different protein profile from chemically driven ones.•MVs released upon graphene oxide exposure affect neuronal signaling and membrane stiffness.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.01.142</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1926-3700</orcidid><orcidid>https://orcid.org/0000-0001-8420-0787</orcidid><orcidid>https://orcid.org/0000-0002-9026-1743</orcidid><orcidid>https://orcid.org/0000-0002-1307-7475</orcidid><orcidid>https://orcid.org/0000-0001-8924-4906</orcidid><orcidid>https://orcid.org/0000-0002-7420-2778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2021-05, Vol.176, p.458-469
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2511922570
source ScienceDirect Journals (5 years ago - present)
subjects Atomic force microscopy
Atomic force microscopy and spectroscopy
Brain
Cortical neuronal cultures
Extracellular vesicles
Fourier transforms
FTIR-ATR and UVRR spectroscopy
Graphene
Graphene oxide
Light reflection
Light scattering
Membranes
Nanotechnology
Neurons
Plasma
Raman spectroscopy
Resonance scattering
Shedding
Signalling systems
Synaptic activity
title Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shedding%20plasma%20membrane%20vesicles%20induced%20by%20graphene%20oxide%20nanoflakes%20in%20brain%20cultured%20astrocytes&rft.jtitle=Carbon%20(New%20York)&rft.au=Musto,%20Mattia&rft.date=2021-05&rft.volume=176&rft.spage=458&rft.epage=469&rft.pages=458-469&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.01.142&rft_dat=%3Cproquest_cross%3E2511922570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511922570&rft_id=info:pmid/&rft_els_id=S0008622321001627&rfr_iscdi=true