Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes
Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functio...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-05, Vol.176, p.458-469 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | |
container_start_page | 458 |
container_title | Carbon (New York) |
container_volume | 176 |
creator | Musto, Mattia Parisse, Pietro Pachetti, Maria Memo, Christian Di Mauro, Giuseppe Ballesteros, Belen Lozano, Neus Kostarelos, Kostas Casalis, Loredana Ballerini, Laura |
description | Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functions. The increasing clinical relevance of these signaling systems requires a deeper understanding of MV features, currently limited by both their nanoscale dimensions and the low rate of their constituent release. Hence, to investigate the features of such glial signals, nanotechnology-based approaches and the applications of unconventional, cost-effective tools in generating MVs are needed. Here, small graphene oxide (s-GO) nanoflakes are used to boost MVs shedding from astrocytes in cultures and s-GO generated MVs are compared with those generated by a natural stimulant, namely ATP, by atomic force microscopy, light scattering, attenuated total reflection–fourier transform infra-red and ultraviolet resonance Raman spectroscopy. We also report the ability of both types of MVs, upon acute and transient exposure of patch clamped cultured neurons, to modulate basal synaptic transmission, inducing a stable increase in synaptic activity accompanied by changes in neuronal plasma membrane elastic features.
[Display omitted]
•Graphene oxide interferes with cell membrane dynamics and enhance astrocytes’ release of MVs.•MVs driven by graphene oxide stimuli display a different protein profile from chemically driven ones.•MVs released upon graphene oxide exposure affect neuronal signaling and membrane stiffness. |
doi_str_mv | 10.1016/j.carbon.2021.01.142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511922570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321001627</els_id><sourcerecordid>2511922570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b2a89ef98d8a78b48ad01977c36420284b26bdec4bf41f45a6d7fb3232970a053</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywssU6wHSdxNkio4iVVYgGsLT8mrUNe2ElF_x6XsmYzo9HcO6N7ELqmJKWEFrdNapTXQ58ywmhKaEo5O0ELKsosyURFT9GCECKSgrHsHF2E0MSRC8oXyLxtwVrXb_DYqtAp3EGnveoB7yA400LArrezAYv1Hm-8GrcQl8O3s4B71Q91qz5_RTjaYjVzO80-ylWY_GD2E4RLdFarNsDVX1-ij8eH99Vzsn59elndrxOTCTIlmilRQV0JK1QpNBfKElqVpckKHoMJrlmhLRiua05rnqvClrXOWMaqkiiSZ0t0c7w7-uFrhjDJZph9H19KllNaMZaXJKr4UWX8EIKHWo7edcrvJSXygFM28ohTHnBKQmXEGW13RxvEBDsHXgbjoI9gnAczSTu4_w_8AFZqgPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511922570</pqid></control><display><type>article</type><title>Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Musto, Mattia ; Parisse, Pietro ; Pachetti, Maria ; Memo, Christian ; Di Mauro, Giuseppe ; Ballesteros, Belen ; Lozano, Neus ; Kostarelos, Kostas ; Casalis, Loredana ; Ballerini, Laura</creator><creatorcontrib>Musto, Mattia ; Parisse, Pietro ; Pachetti, Maria ; Memo, Christian ; Di Mauro, Giuseppe ; Ballesteros, Belen ; Lozano, Neus ; Kostarelos, Kostas ; Casalis, Loredana ; Ballerini, Laura</creatorcontrib><description>Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functions. The increasing clinical relevance of these signaling systems requires a deeper understanding of MV features, currently limited by both their nanoscale dimensions and the low rate of their constituent release. Hence, to investigate the features of such glial signals, nanotechnology-based approaches and the applications of unconventional, cost-effective tools in generating MVs are needed. Here, small graphene oxide (s-GO) nanoflakes are used to boost MVs shedding from astrocytes in cultures and s-GO generated MVs are compared with those generated by a natural stimulant, namely ATP, by atomic force microscopy, light scattering, attenuated total reflection–fourier transform infra-red and ultraviolet resonance Raman spectroscopy. We also report the ability of both types of MVs, upon acute and transient exposure of patch clamped cultured neurons, to modulate basal synaptic transmission, inducing a stable increase in synaptic activity accompanied by changes in neuronal plasma membrane elastic features.
[Display omitted]
•Graphene oxide interferes with cell membrane dynamics and enhance astrocytes’ release of MVs.•MVs driven by graphene oxide stimuli display a different protein profile from chemically driven ones.•MVs released upon graphene oxide exposure affect neuronal signaling and membrane stiffness.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.01.142</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Atomic force microscopy and spectroscopy ; Brain ; Cortical neuronal cultures ; Extracellular vesicles ; Fourier transforms ; FTIR-ATR and UVRR spectroscopy ; Graphene ; Graphene oxide ; Light reflection ; Light scattering ; Membranes ; Nanotechnology ; Neurons ; Plasma ; Raman spectroscopy ; Resonance scattering ; Shedding ; Signalling systems ; Synaptic activity</subject><ispartof>Carbon (New York), 2021-05, Vol.176, p.458-469</ispartof><rights>2021 The Author(s)</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b2a89ef98d8a78b48ad01977c36420284b26bdec4bf41f45a6d7fb3232970a053</citedby><cites>FETCH-LOGICAL-c380t-b2a89ef98d8a78b48ad01977c36420284b26bdec4bf41f45a6d7fb3232970a053</cites><orcidid>0000-0003-1926-3700 ; 0000-0001-8420-0787 ; 0000-0002-9026-1743 ; 0000-0002-1307-7475 ; 0000-0001-8924-4906 ; 0000-0002-7420-2778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.01.142$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Musto, Mattia</creatorcontrib><creatorcontrib>Parisse, Pietro</creatorcontrib><creatorcontrib>Pachetti, Maria</creatorcontrib><creatorcontrib>Memo, Christian</creatorcontrib><creatorcontrib>Di Mauro, Giuseppe</creatorcontrib><creatorcontrib>Ballesteros, Belen</creatorcontrib><creatorcontrib>Lozano, Neus</creatorcontrib><creatorcontrib>Kostarelos, Kostas</creatorcontrib><creatorcontrib>Casalis, Loredana</creatorcontrib><creatorcontrib>Ballerini, Laura</creatorcontrib><title>Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes</title><title>Carbon (New York)</title><description>Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functions. The increasing clinical relevance of these signaling systems requires a deeper understanding of MV features, currently limited by both their nanoscale dimensions and the low rate of their constituent release. Hence, to investigate the features of such glial signals, nanotechnology-based approaches and the applications of unconventional, cost-effective tools in generating MVs are needed. Here, small graphene oxide (s-GO) nanoflakes are used to boost MVs shedding from astrocytes in cultures and s-GO generated MVs are compared with those generated by a natural stimulant, namely ATP, by atomic force microscopy, light scattering, attenuated total reflection–fourier transform infra-red and ultraviolet resonance Raman spectroscopy. We also report the ability of both types of MVs, upon acute and transient exposure of patch clamped cultured neurons, to modulate basal synaptic transmission, inducing a stable increase in synaptic activity accompanied by changes in neuronal plasma membrane elastic features.
[Display omitted]
•Graphene oxide interferes with cell membrane dynamics and enhance astrocytes’ release of MVs.•MVs driven by graphene oxide stimuli display a different protein profile from chemically driven ones.•MVs released upon graphene oxide exposure affect neuronal signaling and membrane stiffness.</description><subject>Atomic force microscopy</subject><subject>Atomic force microscopy and spectroscopy</subject><subject>Brain</subject><subject>Cortical neuronal cultures</subject><subject>Extracellular vesicles</subject><subject>Fourier transforms</subject><subject>FTIR-ATR and UVRR spectroscopy</subject><subject>Graphene</subject><subject>Graphene oxide</subject><subject>Light reflection</subject><subject>Light scattering</subject><subject>Membranes</subject><subject>Nanotechnology</subject><subject>Neurons</subject><subject>Plasma</subject><subject>Raman spectroscopy</subject><subject>Resonance scattering</subject><subject>Shedding</subject><subject>Signalling systems</subject><subject>Synaptic activity</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywssU6wHSdxNkio4iVVYgGsLT8mrUNe2ElF_x6XsmYzo9HcO6N7ELqmJKWEFrdNapTXQ58ywmhKaEo5O0ELKsosyURFT9GCECKSgrHsHF2E0MSRC8oXyLxtwVrXb_DYqtAp3EGnveoB7yA400LArrezAYv1Hm-8GrcQl8O3s4B71Q91qz5_RTjaYjVzO80-ylWY_GD2E4RLdFarNsDVX1-ij8eH99Vzsn59elndrxOTCTIlmilRQV0JK1QpNBfKElqVpckKHoMJrlmhLRiua05rnqvClrXOWMaqkiiSZ0t0c7w7-uFrhjDJZph9H19KllNaMZaXJKr4UWX8EIKHWo7edcrvJSXygFM28ohTHnBKQmXEGW13RxvEBDsHXgbjoI9gnAczSTu4_w_8AFZqgPQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Musto, Mattia</creator><creator>Parisse, Pietro</creator><creator>Pachetti, Maria</creator><creator>Memo, Christian</creator><creator>Di Mauro, Giuseppe</creator><creator>Ballesteros, Belen</creator><creator>Lozano, Neus</creator><creator>Kostarelos, Kostas</creator><creator>Casalis, Loredana</creator><creator>Ballerini, Laura</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1926-3700</orcidid><orcidid>https://orcid.org/0000-0001-8420-0787</orcidid><orcidid>https://orcid.org/0000-0002-9026-1743</orcidid><orcidid>https://orcid.org/0000-0002-1307-7475</orcidid><orcidid>https://orcid.org/0000-0001-8924-4906</orcidid><orcidid>https://orcid.org/0000-0002-7420-2778</orcidid></search><sort><creationdate>202105</creationdate><title>Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes</title><author>Musto, Mattia ; Parisse, Pietro ; Pachetti, Maria ; Memo, Christian ; Di Mauro, Giuseppe ; Ballesteros, Belen ; Lozano, Neus ; Kostarelos, Kostas ; Casalis, Loredana ; Ballerini, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b2a89ef98d8a78b48ad01977c36420284b26bdec4bf41f45a6d7fb3232970a053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopy</topic><topic>Atomic force microscopy and spectroscopy</topic><topic>Brain</topic><topic>Cortical neuronal cultures</topic><topic>Extracellular vesicles</topic><topic>Fourier transforms</topic><topic>FTIR-ATR and UVRR spectroscopy</topic><topic>Graphene</topic><topic>Graphene oxide</topic><topic>Light reflection</topic><topic>Light scattering</topic><topic>Membranes</topic><topic>Nanotechnology</topic><topic>Neurons</topic><topic>Plasma</topic><topic>Raman spectroscopy</topic><topic>Resonance scattering</topic><topic>Shedding</topic><topic>Signalling systems</topic><topic>Synaptic activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musto, Mattia</creatorcontrib><creatorcontrib>Parisse, Pietro</creatorcontrib><creatorcontrib>Pachetti, Maria</creatorcontrib><creatorcontrib>Memo, Christian</creatorcontrib><creatorcontrib>Di Mauro, Giuseppe</creatorcontrib><creatorcontrib>Ballesteros, Belen</creatorcontrib><creatorcontrib>Lozano, Neus</creatorcontrib><creatorcontrib>Kostarelos, Kostas</creatorcontrib><creatorcontrib>Casalis, Loredana</creatorcontrib><creatorcontrib>Ballerini, Laura</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musto, Mattia</au><au>Parisse, Pietro</au><au>Pachetti, Maria</au><au>Memo, Christian</au><au>Di Mauro, Giuseppe</au><au>Ballesteros, Belen</au><au>Lozano, Neus</au><au>Kostarelos, Kostas</au><au>Casalis, Loredana</au><au>Ballerini, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes</atitle><jtitle>Carbon (New York)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>176</volume><spage>458</spage><epage>469</epage><pages>458-469</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Microvesicles (MVs) generated and released by astrocytes, the brain prevalent cells, crucially contribute to intercellular communication, representing key vectorized systems able to spread and actively transfer signaling molecules from astrocytes to neurons, ultimately modulating target cell functions. The increasing clinical relevance of these signaling systems requires a deeper understanding of MV features, currently limited by both their nanoscale dimensions and the low rate of their constituent release. Hence, to investigate the features of such glial signals, nanotechnology-based approaches and the applications of unconventional, cost-effective tools in generating MVs are needed. Here, small graphene oxide (s-GO) nanoflakes are used to boost MVs shedding from astrocytes in cultures and s-GO generated MVs are compared with those generated by a natural stimulant, namely ATP, by atomic force microscopy, light scattering, attenuated total reflection–fourier transform infra-red and ultraviolet resonance Raman spectroscopy. We also report the ability of both types of MVs, upon acute and transient exposure of patch clamped cultured neurons, to modulate basal synaptic transmission, inducing a stable increase in synaptic activity accompanied by changes in neuronal plasma membrane elastic features.
[Display omitted]
•Graphene oxide interferes with cell membrane dynamics and enhance astrocytes’ release of MVs.•MVs driven by graphene oxide stimuli display a different protein profile from chemically driven ones.•MVs released upon graphene oxide exposure affect neuronal signaling and membrane stiffness.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.01.142</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1926-3700</orcidid><orcidid>https://orcid.org/0000-0001-8420-0787</orcidid><orcidid>https://orcid.org/0000-0002-9026-1743</orcidid><orcidid>https://orcid.org/0000-0002-1307-7475</orcidid><orcidid>https://orcid.org/0000-0001-8924-4906</orcidid><orcidid>https://orcid.org/0000-0002-7420-2778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2021-05, Vol.176, p.458-469 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2511922570 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Atomic force microscopy Atomic force microscopy and spectroscopy Brain Cortical neuronal cultures Extracellular vesicles Fourier transforms FTIR-ATR and UVRR spectroscopy Graphene Graphene oxide Light reflection Light scattering Membranes Nanotechnology Neurons Plasma Raman spectroscopy Resonance scattering Shedding Signalling systems Synaptic activity |
title | Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shedding%20plasma%20membrane%20vesicles%20induced%20by%20graphene%20oxide%20nanoflakes%20in%20brain%20cultured%20astrocytes&rft.jtitle=Carbon%20(New%20York)&rft.au=Musto,%20Mattia&rft.date=2021-05&rft.volume=176&rft.spage=458&rft.epage=469&rft.pages=458-469&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.01.142&rft_dat=%3Cproquest_cross%3E2511922570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511922570&rft_id=info:pmid/&rft_els_id=S0008622321001627&rfr_iscdi=true |