A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images

Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weather and forecasting 2020-12, Vol.35 (6), p.2567-2588
Hauptverfasser: Cintineo, John L., Pavolonis, Michael J., Sieglaff, Justin M., Wimmers, Anthony, Brunner, Jason, Bellon, Willard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2588
container_issue 6
container_start_page 2567
container_title Weather and forecasting
container_volume 35
creator Cintineo, John L.
Pavolonis, Michael J.
Sieglaff, Justin M.
Wimmers, Anthony
Brunner, Jason
Bellon, Willard
description Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64- μ m reflectance and 10.35- μ m brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board GOES-16 . Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35- μ m brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64- μ m reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.
doi_str_mv 10.1175/WAF-D-20-0028.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511386724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511386724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-5d778ee6c1f7949058d817d83ed5dc131b7ec1d6c553f8c28965e18d51ba0e163</originalsourceid><addsrcrecordid>eNotkMFLwzAUh4MoOKdnrwHP2fLSpk2PZdM52PCgw2PImtfR0TUzSQX_e1u20-P3-Pi9x0fIM_AZQC7n3-UbWzLBGedCzeCGTECOKU3SWzLhSgmmQGb35CGEIx8gKYoJiSVdIp7ZBo3vmu5At85iS2vnadlHdzIR7UBErGLjOupquu4idgHptrGtiU3sLdKF636vxC6MLSt0IZpxYfwf_Rxa2raJSNcnc8DwSO5q0wZ8us4p2b29fi3e2eZjtV6UG1aJrIhM2jxXiFkFdV6kBZfKKsitStBKW0EC-xwrsFklZVKrSqgikwjKStgbjpAlU_Jy6T1799NjiProet8NJ7WQAInKcpEO1PxCVd6F4LHWZ9-chr81cD2q1YNavdSC61GthuQfLPltBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511386724</pqid></control><display><type>article</type><title>A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Cintineo, John L. ; Pavolonis, Michael J. ; Sieglaff, Justin M. ; Wimmers, Anthony ; Brunner, Jason ; Bellon, Willard</creator><creatorcontrib>Cintineo, John L. ; Pavolonis, Michael J. ; Sieglaff, Justin M. ; Wimmers, Anthony ; Brunner, Jason ; Bellon, Willard</creatorcontrib><description>Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64- μ m reflectance and 10.35- μ m brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board GOES-16 . Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35- μ m brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64- μ m reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.</description><identifier>ISSN: 0882-8156</identifier><identifier>EISSN: 1520-0434</identifier><identifier>DOI: 10.1175/WAF-D-20-0028.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Albedo ; Algorithms ; Anvil clouds ; Artificial neural networks ; Aviation ; Brightness ; Brightness temperature ; Bubbling ; Cirrus clouds ; Cloud albedo ; Clouds ; Convection ; Deep learning ; Density ; Feature extraction ; Learning algorithms ; Lightning ; Machine learning ; Mathematical models ; Meteorological satellites ; Neural networks ; Permutations ; Plumes ; Radar ; Radar data ; Reflectance ; Satellite data ; Satellite imagery ; Satellites ; Severe weather ; Spaceborne remote sensing ; Surface radiation temperature ; Synchronous satellites ; Temperature gradients ; Texturing ; Thunderstorms ; Training ; Updraft ; Weather forecasting</subject><ispartof>Weather and forecasting, 2020-12, Vol.35 (6), p.2567-2588</ispartof><rights>Copyright American Meteorological Society Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-5d778ee6c1f7949058d817d83ed5dc131b7ec1d6c553f8c28965e18d51ba0e163</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Cintineo, John L.</creatorcontrib><creatorcontrib>Pavolonis, Michael J.</creatorcontrib><creatorcontrib>Sieglaff, Justin M.</creatorcontrib><creatorcontrib>Wimmers, Anthony</creatorcontrib><creatorcontrib>Brunner, Jason</creatorcontrib><creatorcontrib>Bellon, Willard</creatorcontrib><title>A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images</title><title>Weather and forecasting</title><description>Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64- μ m reflectance and 10.35- μ m brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board GOES-16 . Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35- μ m brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64- μ m reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.</description><subject>Albedo</subject><subject>Algorithms</subject><subject>Anvil clouds</subject><subject>Artificial neural networks</subject><subject>Aviation</subject><subject>Brightness</subject><subject>Brightness temperature</subject><subject>Bubbling</subject><subject>Cirrus clouds</subject><subject>Cloud albedo</subject><subject>Clouds</subject><subject>Convection</subject><subject>Deep learning</subject><subject>Density</subject><subject>Feature extraction</subject><subject>Learning algorithms</subject><subject>Lightning</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Neural networks</subject><subject>Permutations</subject><subject>Plumes</subject><subject>Radar</subject><subject>Radar data</subject><subject>Reflectance</subject><subject>Satellite data</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Severe weather</subject><subject>Spaceborne remote sensing</subject><subject>Surface radiation temperature</subject><subject>Synchronous satellites</subject><subject>Temperature gradients</subject><subject>Texturing</subject><subject>Thunderstorms</subject><subject>Training</subject><subject>Updraft</subject><subject>Weather forecasting</subject><issn>0882-8156</issn><issn>1520-0434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMFLwzAUh4MoOKdnrwHP2fLSpk2PZdM52PCgw2PImtfR0TUzSQX_e1u20-P3-Pi9x0fIM_AZQC7n3-UbWzLBGedCzeCGTECOKU3SWzLhSgmmQGb35CGEIx8gKYoJiSVdIp7ZBo3vmu5At85iS2vnadlHdzIR7UBErGLjOupquu4idgHptrGtiU3sLdKF636vxC6MLSt0IZpxYfwf_Rxa2raJSNcnc8DwSO5q0wZ8us4p2b29fi3e2eZjtV6UG1aJrIhM2jxXiFkFdV6kBZfKKsitStBKW0EC-xwrsFklZVKrSqgikwjKStgbjpAlU_Jy6T1799NjiProet8NJ7WQAInKcpEO1PxCVd6F4LHWZ9-chr81cD2q1YNavdSC61GthuQfLPltBQ</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Cintineo, John L.</creator><creator>Pavolonis, Michael J.</creator><creator>Sieglaff, Justin M.</creator><creator>Wimmers, Anthony</creator><creator>Brunner, Jason</creator><creator>Bellon, Willard</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>U9A</scope></search><sort><creationdate>202012</creationdate><title>A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images</title><author>Cintineo, John L. ; Pavolonis, Michael J. ; Sieglaff, Justin M. ; Wimmers, Anthony ; Brunner, Jason ; Bellon, Willard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-5d778ee6c1f7949058d817d83ed5dc131b7ec1d6c553f8c28965e18d51ba0e163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Albedo</topic><topic>Algorithms</topic><topic>Anvil clouds</topic><topic>Artificial neural networks</topic><topic>Aviation</topic><topic>Brightness</topic><topic>Brightness temperature</topic><topic>Bubbling</topic><topic>Cirrus clouds</topic><topic>Cloud albedo</topic><topic>Clouds</topic><topic>Convection</topic><topic>Deep learning</topic><topic>Density</topic><topic>Feature extraction</topic><topic>Learning algorithms</topic><topic>Lightning</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Neural networks</topic><topic>Permutations</topic><topic>Plumes</topic><topic>Radar</topic><topic>Radar data</topic><topic>Reflectance</topic><topic>Satellite data</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Severe weather</topic><topic>Spaceborne remote sensing</topic><topic>Surface radiation temperature</topic><topic>Synchronous satellites</topic><topic>Temperature gradients</topic><topic>Texturing</topic><topic>Thunderstorms</topic><topic>Training</topic><topic>Updraft</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cintineo, John L.</creatorcontrib><creatorcontrib>Pavolonis, Michael J.</creatorcontrib><creatorcontrib>Sieglaff, Justin M.</creatorcontrib><creatorcontrib>Wimmers, Anthony</creatorcontrib><creatorcontrib>Brunner, Jason</creatorcontrib><creatorcontrib>Bellon, Willard</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Weather and forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cintineo, John L.</au><au>Pavolonis, Michael J.</au><au>Sieglaff, Justin M.</au><au>Wimmers, Anthony</au><au>Brunner, Jason</au><au>Bellon, Willard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images</atitle><jtitle>Weather and forecasting</jtitle><date>2020-12</date><risdate>2020</risdate><volume>35</volume><issue>6</issue><spage>2567</spage><epage>2588</epage><pages>2567-2588</pages><issn>0882-8156</issn><eissn>1520-0434</eissn><abstract>Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64- μ m reflectance and 10.35- μ m brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board GOES-16 . Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35- μ m brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64- μ m reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/WAF-D-20-0028.1</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0882-8156
ispartof Weather and forecasting, 2020-12, Vol.35 (6), p.2567-2588
issn 0882-8156
1520-0434
language eng
recordid cdi_proquest_journals_2511386724
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Albedo
Algorithms
Anvil clouds
Artificial neural networks
Aviation
Brightness
Brightness temperature
Bubbling
Cirrus clouds
Cloud albedo
Clouds
Convection
Deep learning
Density
Feature extraction
Learning algorithms
Lightning
Machine learning
Mathematical models
Meteorological satellites
Neural networks
Permutations
Plumes
Radar
Radar data
Reflectance
Satellite data
Satellite imagery
Satellites
Severe weather
Spaceborne remote sensing
Surface radiation temperature
Synchronous satellites
Temperature gradients
Texturing
Thunderstorms
Training
Updraft
Weather forecasting
title A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep-Learning%20Model%20for%20Automated%20Detection%20of%20Intense%20Midlatitude%20Convection%20Using%20Geostationary%20Satellite%20Images&rft.jtitle=Weather%20and%20forecasting&rft.au=Cintineo,%20John%20L.&rft.date=2020-12&rft.volume=35&rft.issue=6&rft.spage=2567&rft.epage=2588&rft.pages=2567-2588&rft.issn=0882-8156&rft.eissn=1520-0434&rft_id=info:doi/10.1175/WAF-D-20-0028.1&rft_dat=%3Cproquest_cross%3E2511386724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511386724&rft_id=info:pmid/&rfr_iscdi=true