A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images
Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooti...
Gespeichert in:
Veröffentlicht in: | Weather and forecasting 2020-12, Vol.35 (6), p.2567-2588 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2588 |
---|---|
container_issue | 6 |
container_start_page | 2567 |
container_title | Weather and forecasting |
container_volume | 35 |
creator | Cintineo, John L. Pavolonis, Michael J. Sieglaff, Justin M. Wimmers, Anthony Brunner, Jason Bellon, Willard |
description | Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64-
μ
m reflectance and 10.35-
μ
m brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board
GOES-16
. Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35-
μ
m brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64-
μ
m reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes. |
doi_str_mv | 10.1175/WAF-D-20-0028.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511386724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511386724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-5d778ee6c1f7949058d817d83ed5dc131b7ec1d6c553f8c28965e18d51ba0e163</originalsourceid><addsrcrecordid>eNotkMFLwzAUh4MoOKdnrwHP2fLSpk2PZdM52PCgw2PImtfR0TUzSQX_e1u20-P3-Pi9x0fIM_AZQC7n3-UbWzLBGedCzeCGTECOKU3SWzLhSgmmQGb35CGEIx8gKYoJiSVdIp7ZBo3vmu5At85iS2vnadlHdzIR7UBErGLjOupquu4idgHptrGtiU3sLdKF636vxC6MLSt0IZpxYfwf_Rxa2raJSNcnc8DwSO5q0wZ8us4p2b29fi3e2eZjtV6UG1aJrIhM2jxXiFkFdV6kBZfKKsitStBKW0EC-xwrsFklZVKrSqgikwjKStgbjpAlU_Jy6T1799NjiProet8NJ7WQAInKcpEO1PxCVd6F4LHWZ9-chr81cD2q1YNavdSC61GthuQfLPltBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511386724</pqid></control><display><type>article</type><title>A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Cintineo, John L. ; Pavolonis, Michael J. ; Sieglaff, Justin M. ; Wimmers, Anthony ; Brunner, Jason ; Bellon, Willard</creator><creatorcontrib>Cintineo, John L. ; Pavolonis, Michael J. ; Sieglaff, Justin M. ; Wimmers, Anthony ; Brunner, Jason ; Bellon, Willard</creatorcontrib><description>Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64-
μ
m reflectance and 10.35-
μ
m brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board
GOES-16
. Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35-
μ
m brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64-
μ
m reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.</description><identifier>ISSN: 0882-8156</identifier><identifier>EISSN: 1520-0434</identifier><identifier>DOI: 10.1175/WAF-D-20-0028.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Albedo ; Algorithms ; Anvil clouds ; Artificial neural networks ; Aviation ; Brightness ; Brightness temperature ; Bubbling ; Cirrus clouds ; Cloud albedo ; Clouds ; Convection ; Deep learning ; Density ; Feature extraction ; Learning algorithms ; Lightning ; Machine learning ; Mathematical models ; Meteorological satellites ; Neural networks ; Permutations ; Plumes ; Radar ; Radar data ; Reflectance ; Satellite data ; Satellite imagery ; Satellites ; Severe weather ; Spaceborne remote sensing ; Surface radiation temperature ; Synchronous satellites ; Temperature gradients ; Texturing ; Thunderstorms ; Training ; Updraft ; Weather forecasting</subject><ispartof>Weather and forecasting, 2020-12, Vol.35 (6), p.2567-2588</ispartof><rights>Copyright American Meteorological Society Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-5d778ee6c1f7949058d817d83ed5dc131b7ec1d6c553f8c28965e18d51ba0e163</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Cintineo, John L.</creatorcontrib><creatorcontrib>Pavolonis, Michael J.</creatorcontrib><creatorcontrib>Sieglaff, Justin M.</creatorcontrib><creatorcontrib>Wimmers, Anthony</creatorcontrib><creatorcontrib>Brunner, Jason</creatorcontrib><creatorcontrib>Bellon, Willard</creatorcontrib><title>A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images</title><title>Weather and forecasting</title><description>Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64-
μ
m reflectance and 10.35-
μ
m brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board
GOES-16
. Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35-
μ
m brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64-
μ
m reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.</description><subject>Albedo</subject><subject>Algorithms</subject><subject>Anvil clouds</subject><subject>Artificial neural networks</subject><subject>Aviation</subject><subject>Brightness</subject><subject>Brightness temperature</subject><subject>Bubbling</subject><subject>Cirrus clouds</subject><subject>Cloud albedo</subject><subject>Clouds</subject><subject>Convection</subject><subject>Deep learning</subject><subject>Density</subject><subject>Feature extraction</subject><subject>Learning algorithms</subject><subject>Lightning</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Neural networks</subject><subject>Permutations</subject><subject>Plumes</subject><subject>Radar</subject><subject>Radar data</subject><subject>Reflectance</subject><subject>Satellite data</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Severe weather</subject><subject>Spaceborne remote sensing</subject><subject>Surface radiation temperature</subject><subject>Synchronous satellites</subject><subject>Temperature gradients</subject><subject>Texturing</subject><subject>Thunderstorms</subject><subject>Training</subject><subject>Updraft</subject><subject>Weather forecasting</subject><issn>0882-8156</issn><issn>1520-0434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMFLwzAUh4MoOKdnrwHP2fLSpk2PZdM52PCgw2PImtfR0TUzSQX_e1u20-P3-Pi9x0fIM_AZQC7n3-UbWzLBGedCzeCGTECOKU3SWzLhSgmmQGb35CGEIx8gKYoJiSVdIp7ZBo3vmu5At85iS2vnadlHdzIR7UBErGLjOupquu4idgHptrGtiU3sLdKF636vxC6MLSt0IZpxYfwf_Rxa2raJSNcnc8DwSO5q0wZ8us4p2b29fi3e2eZjtV6UG1aJrIhM2jxXiFkFdV6kBZfKKsitStBKW0EC-xwrsFklZVKrSqgikwjKStgbjpAlU_Jy6T1799NjiProet8NJ7WQAInKcpEO1PxCVd6F4LHWZ9-chr81cD2q1YNavdSC61GthuQfLPltBQ</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Cintineo, John L.</creator><creator>Pavolonis, Michael J.</creator><creator>Sieglaff, Justin M.</creator><creator>Wimmers, Anthony</creator><creator>Brunner, Jason</creator><creator>Bellon, Willard</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>U9A</scope></search><sort><creationdate>202012</creationdate><title>A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images</title><author>Cintineo, John L. ; Pavolonis, Michael J. ; Sieglaff, Justin M. ; Wimmers, Anthony ; Brunner, Jason ; Bellon, Willard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-5d778ee6c1f7949058d817d83ed5dc131b7ec1d6c553f8c28965e18d51ba0e163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Albedo</topic><topic>Algorithms</topic><topic>Anvil clouds</topic><topic>Artificial neural networks</topic><topic>Aviation</topic><topic>Brightness</topic><topic>Brightness temperature</topic><topic>Bubbling</topic><topic>Cirrus clouds</topic><topic>Cloud albedo</topic><topic>Clouds</topic><topic>Convection</topic><topic>Deep learning</topic><topic>Density</topic><topic>Feature extraction</topic><topic>Learning algorithms</topic><topic>Lightning</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Neural networks</topic><topic>Permutations</topic><topic>Plumes</topic><topic>Radar</topic><topic>Radar data</topic><topic>Reflectance</topic><topic>Satellite data</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Severe weather</topic><topic>Spaceborne remote sensing</topic><topic>Surface radiation temperature</topic><topic>Synchronous satellites</topic><topic>Temperature gradients</topic><topic>Texturing</topic><topic>Thunderstorms</topic><topic>Training</topic><topic>Updraft</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cintineo, John L.</creatorcontrib><creatorcontrib>Pavolonis, Michael J.</creatorcontrib><creatorcontrib>Sieglaff, Justin M.</creatorcontrib><creatorcontrib>Wimmers, Anthony</creatorcontrib><creatorcontrib>Brunner, Jason</creatorcontrib><creatorcontrib>Bellon, Willard</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Weather and forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cintineo, John L.</au><au>Pavolonis, Michael J.</au><au>Sieglaff, Justin M.</au><au>Wimmers, Anthony</au><au>Brunner, Jason</au><au>Bellon, Willard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images</atitle><jtitle>Weather and forecasting</jtitle><date>2020-12</date><risdate>2020</risdate><volume>35</volume><issue>6</issue><spage>2567</spage><epage>2588</epage><pages>2567-2588</pages><issn>0882-8156</issn><eissn>1520-0434</eissn><abstract>Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64-
μ
m reflectance and 10.35-
μ
m brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board
GOES-16
. Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35-
μ
m brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64-
μ
m reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/WAF-D-20-0028.1</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0882-8156 |
ispartof | Weather and forecasting, 2020-12, Vol.35 (6), p.2567-2588 |
issn | 0882-8156 1520-0434 |
language | eng |
recordid | cdi_proquest_journals_2511386724 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Albedo Algorithms Anvil clouds Artificial neural networks Aviation Brightness Brightness temperature Bubbling Cirrus clouds Cloud albedo Clouds Convection Deep learning Density Feature extraction Learning algorithms Lightning Machine learning Mathematical models Meteorological satellites Neural networks Permutations Plumes Radar Radar data Reflectance Satellite data Satellite imagery Satellites Severe weather Spaceborne remote sensing Surface radiation temperature Synchronous satellites Temperature gradients Texturing Thunderstorms Training Updraft Weather forecasting |
title | A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep-Learning%20Model%20for%20Automated%20Detection%20of%20Intense%20Midlatitude%20Convection%20Using%20Geostationary%20Satellite%20Images&rft.jtitle=Weather%20and%20forecasting&rft.au=Cintineo,%20John%20L.&rft.date=2020-12&rft.volume=35&rft.issue=6&rft.spage=2567&rft.epage=2588&rft.pages=2567-2588&rft.issn=0882-8156&rft.eissn=1520-0434&rft_id=info:doi/10.1175/WAF-D-20-0028.1&rft_dat=%3Cproquest_cross%3E2511386724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511386724&rft_id=info:pmid/&rfr_iscdi=true |