Why Has the Inner Tibetan Plateau Become Wetter since the Mid-1990s?
The Inner Tibetan Plateau (ITP; also called the Qiangtang Plateau) appears to have experienced an overall wetting in summer (June, July, and August) since the mid-1990s, which has caused the rapid expansion of thousands of lakes. In this study, changes in atmospheric circulations associated with the...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2020-10, Vol.33 (19), p.8507-8522 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8522 |
---|---|
container_issue | 19 |
container_start_page | 8507 |
container_title | Journal of climate |
container_volume | 33 |
creator | Sun, Jing Yang, Kun Guo, Weidong Wang, Yan He, Jie Lu, Hui |
description | The Inner Tibetan Plateau (ITP; also called the Qiangtang Plateau) appears to have experienced an overall wetting in summer (June, July, and August) since the mid-1990s, which has caused the rapid expansion of thousands of lakes. In this study, changes in atmospheric circulations associated with the wetting process are analyzed for 1979–2018. These analyses show that the wetting is associated with simultaneously weakened westerlies over the Tibetan Plateau (TP). The latter is further significantly correlated with the Atlantic multidecadal oscillation (AMO) on interdecadal time scales. The AMO has been in a positive phase (warm anomaly of the North Atlantic Ocean sea surface) since the mid-1990s, which has led to both a northward shift and weakening of the subtropical westerly jet stream at 200 hPa near the TP through a wave train of cyclonic and anticyclonic anomalies over Eurasia. These anomalies are characterized by an anomalous anticyclone to the east of the ITP and an anomalous cyclone to the west of the ITP. The former weakens the westerly winds, trapping water vapor over the ITP while the latter facilitates water vapor intruding from the Arabian Sea into the ITP. Accordingly, summer precipitation over the ITP has increased since the mid-1990s. |
doi_str_mv | 10.1175/JCLI-D-19-0471.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2511382074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26938086</jstor_id><sourcerecordid>26938086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-29a4d95cfb885b5d7058632852a4545500a064a9f6c703873aee2beeb21aaf6c3</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYjevZg08bw47bbb9mQUVDAYPWA4Nt1lNiyBXWzLgX9PEeNpMjPfmzd5hNwyGDCm5MP7cDrJRhkzGQjFBuyM9JjkkDrBz0kPtBGZVlJekqsQVgCMFwA9Mpov93TsAo1LpJO2RU9nTYnRtfRr7SK6HX3GqtsgnWOMaRuatsJf-qNZJDsD4fGaXNRuHfDmr_bJ9-vLbDjOpp9vk-HTNKtyzWPGjRMLI6u61FqWcqFA6iLnWnInpJASwEEhnKmLSkGuVe4QeYlYcuZcGuZ9cn-6u_Xdzw5DtKtu59tkablkLJmAEomCE1X5LgSPtd36ZuP83jKwx6zsMSs7sszYY1aWJcndSbIKsfP_PC9MriH9eAAeHWNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511382074</pqid></control><display><type>article</type><title>Why Has the Inner Tibetan Plateau Become Wetter since the Mid-1990s?</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><creator>Sun, Jing ; Yang, Kun ; Guo, Weidong ; Wang, Yan ; He, Jie ; Lu, Hui</creator><creatorcontrib>Sun, Jing ; Yang, Kun ; Guo, Weidong ; Wang, Yan ; He, Jie ; Lu, Hui</creatorcontrib><description>The Inner Tibetan Plateau (ITP; also called the Qiangtang Plateau) appears to have experienced an overall wetting in summer (June, July, and August) since the mid-1990s, which has caused the rapid expansion of thousands of lakes. In this study, changes in atmospheric circulations associated with the wetting process are analyzed for 1979–2018. These analyses show that the wetting is associated with simultaneously weakened westerlies over the Tibetan Plateau (TP). The latter is further significantly correlated with the Atlantic multidecadal oscillation (AMO) on interdecadal time scales. The AMO has been in a positive phase (warm anomaly of the North Atlantic Ocean sea surface) since the mid-1990s, which has led to both a northward shift and weakening of the subtropical westerly jet stream at 200 hPa near the TP through a wave train of cyclonic and anticyclonic anomalies over Eurasia. These anomalies are characterized by an anomalous anticyclone to the east of the ITP and an anomalous cyclone to the west of the ITP. The former weakens the westerly winds, trapping water vapor over the ITP while the latter facilitates water vapor intruding from the Arabian Sea into the ITP. Accordingly, summer precipitation over the ITP has increased since the mid-1990s.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-19-0471.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Anomalies ; Anticyclones ; Atlantic Oscillation ; Atmospheric circulation ; Cyclones ; Datasets ; Jet stream ; Jet streams (meteorology) ; Lakes ; Plateaus ; Precipitation ; Sea level ; Sea surface ; Summer ; Summer precipitation ; Time series ; Water vapor ; Water vapour ; Wave trains ; Westerlies ; Wetting ; Winds</subject><ispartof>Journal of climate, 2020-10, Vol.33 (19), p.8507-8522</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright American Meteorological Society Oct 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-29a4d95cfb885b5d7058632852a4545500a064a9f6c703873aee2beeb21aaf6c3</citedby><cites>FETCH-LOGICAL-c382t-29a4d95cfb885b5d7058632852a4545500a064a9f6c703873aee2beeb21aaf6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26938086$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26938086$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3667,27903,27904,57995,58228</link.rule.ids></links><search><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Guo, Weidong</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>He, Jie</creatorcontrib><creatorcontrib>Lu, Hui</creatorcontrib><title>Why Has the Inner Tibetan Plateau Become Wetter since the Mid-1990s?</title><title>Journal of climate</title><description>The Inner Tibetan Plateau (ITP; also called the Qiangtang Plateau) appears to have experienced an overall wetting in summer (June, July, and August) since the mid-1990s, which has caused the rapid expansion of thousands of lakes. In this study, changes in atmospheric circulations associated with the wetting process are analyzed for 1979–2018. These analyses show that the wetting is associated with simultaneously weakened westerlies over the Tibetan Plateau (TP). The latter is further significantly correlated with the Atlantic multidecadal oscillation (AMO) on interdecadal time scales. The AMO has been in a positive phase (warm anomaly of the North Atlantic Ocean sea surface) since the mid-1990s, which has led to both a northward shift and weakening of the subtropical westerly jet stream at 200 hPa near the TP through a wave train of cyclonic and anticyclonic anomalies over Eurasia. These anomalies are characterized by an anomalous anticyclone to the east of the ITP and an anomalous cyclone to the west of the ITP. The former weakens the westerly winds, trapping water vapor over the ITP while the latter facilitates water vapor intruding from the Arabian Sea into the ITP. Accordingly, summer precipitation over the ITP has increased since the mid-1990s.</description><subject>Anomalies</subject><subject>Anticyclones</subject><subject>Atlantic Oscillation</subject><subject>Atmospheric circulation</subject><subject>Cyclones</subject><subject>Datasets</subject><subject>Jet stream</subject><subject>Jet streams (meteorology)</subject><subject>Lakes</subject><subject>Plateaus</subject><subject>Precipitation</subject><subject>Sea level</subject><subject>Sea surface</subject><subject>Summer</subject><subject>Summer precipitation</subject><subject>Time series</subject><subject>Water vapor</subject><subject>Water vapour</subject><subject>Wave trains</subject><subject>Westerlies</subject><subject>Wetting</subject><subject>Winds</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEFPAjEQhRujiYjevZg08bw47bbb9mQUVDAYPWA4Nt1lNiyBXWzLgX9PEeNpMjPfmzd5hNwyGDCm5MP7cDrJRhkzGQjFBuyM9JjkkDrBz0kPtBGZVlJekqsQVgCMFwA9Mpov93TsAo1LpJO2RU9nTYnRtfRr7SK6HX3GqtsgnWOMaRuatsJf-qNZJDsD4fGaXNRuHfDmr_bJ9-vLbDjOpp9vk-HTNKtyzWPGjRMLI6u61FqWcqFA6iLnWnInpJASwEEhnKmLSkGuVe4QeYlYcuZcGuZ9cn-6u_Xdzw5DtKtu59tkablkLJmAEomCE1X5LgSPtd36ZuP83jKwx6zsMSs7sszYY1aWJcndSbIKsfP_PC9MriH9eAAeHWNE</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Sun, Jing</creator><creator>Yang, Kun</creator><creator>Guo, Weidong</creator><creator>Wang, Yan</creator><creator>He, Jie</creator><creator>Lu, Hui</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20201001</creationdate><title>Why Has the Inner Tibetan Plateau Become Wetter since the Mid-1990s?</title><author>Sun, Jing ; Yang, Kun ; Guo, Weidong ; Wang, Yan ; He, Jie ; Lu, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-29a4d95cfb885b5d7058632852a4545500a064a9f6c703873aee2beeb21aaf6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Anticyclones</topic><topic>Atlantic Oscillation</topic><topic>Atmospheric circulation</topic><topic>Cyclones</topic><topic>Datasets</topic><topic>Jet stream</topic><topic>Jet streams (meteorology)</topic><topic>Lakes</topic><topic>Plateaus</topic><topic>Precipitation</topic><topic>Sea level</topic><topic>Sea surface</topic><topic>Summer</topic><topic>Summer precipitation</topic><topic>Time series</topic><topic>Water vapor</topic><topic>Water vapour</topic><topic>Wave trains</topic><topic>Westerlies</topic><topic>Wetting</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Guo, Weidong</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>He, Jie</creatorcontrib><creatorcontrib>Lu, Hui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jing</au><au>Yang, Kun</au><au>Guo, Weidong</au><au>Wang, Yan</au><au>He, Jie</au><au>Lu, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why Has the Inner Tibetan Plateau Become Wetter since the Mid-1990s?</atitle><jtitle>Journal of climate</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>33</volume><issue>19</issue><spage>8507</spage><epage>8522</epage><pages>8507-8522</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The Inner Tibetan Plateau (ITP; also called the Qiangtang Plateau) appears to have experienced an overall wetting in summer (June, July, and August) since the mid-1990s, which has caused the rapid expansion of thousands of lakes. In this study, changes in atmospheric circulations associated with the wetting process are analyzed for 1979–2018. These analyses show that the wetting is associated with simultaneously weakened westerlies over the Tibetan Plateau (TP). The latter is further significantly correlated with the Atlantic multidecadal oscillation (AMO) on interdecadal time scales. The AMO has been in a positive phase (warm anomaly of the North Atlantic Ocean sea surface) since the mid-1990s, which has led to both a northward shift and weakening of the subtropical westerly jet stream at 200 hPa near the TP through a wave train of cyclonic and anticyclonic anomalies over Eurasia. These anomalies are characterized by an anomalous anticyclone to the east of the ITP and an anomalous cyclone to the west of the ITP. The former weakens the westerly winds, trapping water vapor over the ITP while the latter facilitates water vapor intruding from the Arabian Sea into the ITP. Accordingly, summer precipitation over the ITP has increased since the mid-1990s.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-19-0471.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2020-10, Vol.33 (19), p.8507-8522 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_2511382074 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy |
subjects | Anomalies Anticyclones Atlantic Oscillation Atmospheric circulation Cyclones Datasets Jet stream Jet streams (meteorology) Lakes Plateaus Precipitation Sea level Sea surface Summer Summer precipitation Time series Water vapor Water vapour Wave trains Westerlies Wetting Winds |
title | Why Has the Inner Tibetan Plateau Become Wetter since the Mid-1990s? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20Has%20the%20Inner%20Tibetan%20Plateau%20Become%20Wetter%20since%20the%20Mid-1990s?&rft.jtitle=Journal%20of%20climate&rft.au=Sun,%20Jing&rft.date=2020-10-01&rft.volume=33&rft.issue=19&rft.spage=8507&rft.epage=8522&rft.pages=8507-8522&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-19-0471.1&rft_dat=%3Cjstor_proqu%3E26938086%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511382074&rft_id=info:pmid/&rft_jstor_id=26938086&rfr_iscdi=true |