Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations
Satellite-based cloud, radiation flux, and sea ice records covering 34 years are used 1) to investigate autumn cloud cover trends over the Arctic, 2) to assess its relation with declining sea ice using Granger causality (GC) analysis, and 3) to discuss the contribution of the cloud–sea ice (CSI) fee...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2020-09, Vol.33 (17), p.7479-7501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7501 |
---|---|
container_issue | 17 |
container_start_page | 7479 |
container_title | Journal of climate |
container_volume | 33 |
creator | Philipp, Daniel Stengel, Martin Ahrens, Bodo |
description | Satellite-based cloud, radiation flux, and sea ice records covering 34 years are used 1) to investigate autumn cloud cover trends over the Arctic, 2) to assess its relation with declining sea ice using Granger causality (GC) analysis, and 3) to discuss the contribution of the cloud–sea ice (CSI) feedback to Arctic amplification. This paper provides strong evidence for a positive CSI feedback with the capability to contribute to autumnal Arctic amplification. Positive low-level cloud fractional cover (CFClow) trends over the Arctic ice pack are found in October and November (ON) with magnitudes of up to about +9.6% per decade locally. Statistically significant anticorrelations between sea ice concentration (SIC) and CFClow are observed in ON over melting zones, suggesting an association. The GC analysis indicated a causal two-way interaction between SIC and CFClow. Interpreting the resulting F statistic and its spatial distribution as a relation strength proxy, the influence of SIC on CFClow is likely stronger than the reverse. ERA-Interim reanalysis data suggest that ON CFClow is impacted by sea ice melt through surface–atmosphere coupling via turbulent heat and moisture fluxes. Due to weak solar insolation in ON, net cloud radiative forcing (CRF) exerts a warming effect on the Arctic surface. Increasing CFClow induces a large-scale surface warming trend reaching magnitudes of up to about +8.3 W m−2 per decade locally. Sensitivities of total CRF to CFClow ranges between +0.22 and +0.66 W m−2 per percent CFClow. Increasing surface warming can cause a melt season lengthening and hinders formation of perennial ice. |
doi_str_mv | 10.1175/jcli-d-19-0895.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2511380081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26938028</jstor_id><sourcerecordid>26938028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-ae6c1af3eb98e97c81e14279ea2bea984d6a081eb3ac6fffb666e07a8c9abb6d3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOD72boSA64xJH2mzHEZHRyqzUBeuwk16q6211SRVxl9vy4irC4fvO3APIWeCz4XI0svGtjUrmVCM5yqdiz0yE2nEGU-SaJ_MxjBheZamh-TI-4ZzEUnOZ2RYdNBuf-ruhYZXpAtnQ23pCrE0YN_oPdpX6Gr_Tg2Gb8SOPiDQtUUKXUmL_psV-IUtXbb9UHr65KeiOKHPCM7TvqIPELBt64B0Yzy6Lwh13_kTclBB6_H07x6Tp9X14_KWFZub9XJRMJtwERigtAKqGI3KUWU2FyiSKFMIkUFQeVJK4GNoYrCyqiojpUSeQW4VGCPL-Jhc7Ho_XP85oA-66Qc3fux1lAoR53zUR4rvKOt67x1W-sPV7-C2WnA9javvlsVaX2mh9DSunpTzndL40Lt_PpJq7Izy-Bdy63hi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511380081</pqid></control><display><type>article</type><title>Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><creator>Philipp, Daniel ; Stengel, Martin ; Ahrens, Bodo</creator><creatorcontrib>Philipp, Daniel ; Stengel, Martin ; Ahrens, Bodo</creatorcontrib><description>Satellite-based cloud, radiation flux, and sea ice records covering 34 years are used 1) to investigate autumn cloud cover trends over the Arctic, 2) to assess its relation with declining sea ice using Granger causality (GC) analysis, and 3) to discuss the contribution of the cloud–sea ice (CSI) feedback to Arctic amplification. This paper provides strong evidence for a positive CSI feedback with the capability to contribute to autumnal Arctic amplification. Positive low-level cloud fractional cover (CFClow) trends over the Arctic ice pack are found in October and November (ON) with magnitudes of up to about +9.6% per decade locally. Statistically significant anticorrelations between sea ice concentration (SIC) and CFClow are observed in ON over melting zones, suggesting an association. The GC analysis indicated a causal two-way interaction between SIC and CFClow. Interpreting the resulting F statistic and its spatial distribution as a relation strength proxy, the influence of SIC on CFClow is likely stronger than the reverse. ERA-Interim reanalysis data suggest that ON CFClow is impacted by sea ice melt through surface–atmosphere coupling via turbulent heat and moisture fluxes. Due to weak solar insolation in ON, net cloud radiative forcing (CRF) exerts a warming effect on the Arctic surface. Increasing CFClow induces a large-scale surface warming trend reaching magnitudes of up to about +8.3 W m−2 per decade locally. Sensitivities of total CRF to CFClow ranges between +0.22 and +0.66 W m−2 per percent CFClow. Increasing surface warming can cause a melt season lengthening and hinders formation of perennial ice.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-19-0895.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Amplification ; Arctic clouds ; Arctic ice ; Arctic sea ice ; Atmospheric turbulence ; Cloud cover ; Clouds ; Feedback ; Fluxes ; Geographical distribution ; Ice formation ; Ice melting ; Radiation ; Radiation flux ; Radiation-cloud interactions ; Radiative forcing ; Satellite observation ; Satellites ; Sea ice ; Sea ice concentrations ; Spatial distribution ; Statistical analysis ; Surface temperature ; Trends</subject><ispartof>Journal of climate, 2020-09, Vol.33 (17), p.7479-7501</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-ae6c1af3eb98e97c81e14279ea2bea984d6a081eb3ac6fffb666e07a8c9abb6d3</citedby><cites>FETCH-LOGICAL-c401t-ae6c1af3eb98e97c81e14279ea2bea984d6a081eb3ac6fffb666e07a8c9abb6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26938028$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26938028$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,3668,27905,27906,57998,58231</link.rule.ids></links><search><creatorcontrib>Philipp, Daniel</creatorcontrib><creatorcontrib>Stengel, Martin</creatorcontrib><creatorcontrib>Ahrens, Bodo</creatorcontrib><title>Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations</title><title>Journal of climate</title><description>Satellite-based cloud, radiation flux, and sea ice records covering 34 years are used 1) to investigate autumn cloud cover trends over the Arctic, 2) to assess its relation with declining sea ice using Granger causality (GC) analysis, and 3) to discuss the contribution of the cloud–sea ice (CSI) feedback to Arctic amplification. This paper provides strong evidence for a positive CSI feedback with the capability to contribute to autumnal Arctic amplification. Positive low-level cloud fractional cover (CFClow) trends over the Arctic ice pack are found in October and November (ON) with magnitudes of up to about +9.6% per decade locally. Statistically significant anticorrelations between sea ice concentration (SIC) and CFClow are observed in ON over melting zones, suggesting an association. The GC analysis indicated a causal two-way interaction between SIC and CFClow. Interpreting the resulting F statistic and its spatial distribution as a relation strength proxy, the influence of SIC on CFClow is likely stronger than the reverse. ERA-Interim reanalysis data suggest that ON CFClow is impacted by sea ice melt through surface–atmosphere coupling via turbulent heat and moisture fluxes. Due to weak solar insolation in ON, net cloud radiative forcing (CRF) exerts a warming effect on the Arctic surface. Increasing CFClow induces a large-scale surface warming trend reaching magnitudes of up to about +8.3 W m−2 per decade locally. Sensitivities of total CRF to CFClow ranges between +0.22 and +0.66 W m−2 per percent CFClow. Increasing surface warming can cause a melt season lengthening and hinders formation of perennial ice.</description><subject>Amplification</subject><subject>Arctic clouds</subject><subject>Arctic ice</subject><subject>Arctic sea ice</subject><subject>Atmospheric turbulence</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>Feedback</subject><subject>Fluxes</subject><subject>Geographical distribution</subject><subject>Ice formation</subject><subject>Ice melting</subject><subject>Radiation</subject><subject>Radiation flux</subject><subject>Radiation-cloud interactions</subject><subject>Radiative forcing</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sea ice</subject><subject>Sea ice concentrations</subject><subject>Spatial distribution</subject><subject>Statistical analysis</subject><subject>Surface temperature</subject><subject>Trends</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOD72boSA64xJH2mzHEZHRyqzUBeuwk16q6211SRVxl9vy4irC4fvO3APIWeCz4XI0svGtjUrmVCM5yqdiz0yE2nEGU-SaJ_MxjBheZamh-TI-4ZzEUnOZ2RYdNBuf-ruhYZXpAtnQ23pCrE0YN_oPdpX6Gr_Tg2Gb8SOPiDQtUUKXUmL_psV-IUtXbb9UHr65KeiOKHPCM7TvqIPELBt64B0Yzy6Lwh13_kTclBB6_H07x6Tp9X14_KWFZub9XJRMJtwERigtAKqGI3KUWU2FyiSKFMIkUFQeVJK4GNoYrCyqiojpUSeQW4VGCPL-Jhc7Ho_XP85oA-66Qc3fux1lAoR53zUR4rvKOt67x1W-sPV7-C2WnA9javvlsVaX2mh9DSunpTzndL40Lt_PpJq7Izy-Bdy63hi</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Philipp, Daniel</creator><creator>Stengel, Martin</creator><creator>Ahrens, Bodo</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20200901</creationdate><title>Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations</title><author>Philipp, Daniel ; Stengel, Martin ; Ahrens, Bodo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-ae6c1af3eb98e97c81e14279ea2bea984d6a081eb3ac6fffb666e07a8c9abb6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplification</topic><topic>Arctic clouds</topic><topic>Arctic ice</topic><topic>Arctic sea ice</topic><topic>Atmospheric turbulence</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>Feedback</topic><topic>Fluxes</topic><topic>Geographical distribution</topic><topic>Ice formation</topic><topic>Ice melting</topic><topic>Radiation</topic><topic>Radiation flux</topic><topic>Radiation-cloud interactions</topic><topic>Radiative forcing</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sea ice</topic><topic>Sea ice concentrations</topic><topic>Spatial distribution</topic><topic>Statistical analysis</topic><topic>Surface temperature</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Philipp, Daniel</creatorcontrib><creatorcontrib>Stengel, Martin</creatorcontrib><creatorcontrib>Ahrens, Bodo</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Philipp, Daniel</au><au>Stengel, Martin</au><au>Ahrens, Bodo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations</atitle><jtitle>Journal of climate</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>33</volume><issue>17</issue><spage>7479</spage><epage>7501</epage><pages>7479-7501</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Satellite-based cloud, radiation flux, and sea ice records covering 34 years are used 1) to investigate autumn cloud cover trends over the Arctic, 2) to assess its relation with declining sea ice using Granger causality (GC) analysis, and 3) to discuss the contribution of the cloud–sea ice (CSI) feedback to Arctic amplification. This paper provides strong evidence for a positive CSI feedback with the capability to contribute to autumnal Arctic amplification. Positive low-level cloud fractional cover (CFClow) trends over the Arctic ice pack are found in October and November (ON) with magnitudes of up to about +9.6% per decade locally. Statistically significant anticorrelations between sea ice concentration (SIC) and CFClow are observed in ON over melting zones, suggesting an association. The GC analysis indicated a causal two-way interaction between SIC and CFClow. Interpreting the resulting F statistic and its spatial distribution as a relation strength proxy, the influence of SIC on CFClow is likely stronger than the reverse. ERA-Interim reanalysis data suggest that ON CFClow is impacted by sea ice melt through surface–atmosphere coupling via turbulent heat and moisture fluxes. Due to weak solar insolation in ON, net cloud radiative forcing (CRF) exerts a warming effect on the Arctic surface. Increasing CFClow induces a large-scale surface warming trend reaching magnitudes of up to about +8.3 W m−2 per decade locally. Sensitivities of total CRF to CFClow ranges between +0.22 and +0.66 W m−2 per percent CFClow. Increasing surface warming can cause a melt season lengthening and hinders formation of perennial ice.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-19-0895.1</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2020-09, Vol.33 (17), p.7479-7501 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_2511380081 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy |
subjects | Amplification Arctic clouds Arctic ice Arctic sea ice Atmospheric turbulence Cloud cover Clouds Feedback Fluxes Geographical distribution Ice formation Ice melting Radiation Radiation flux Radiation-cloud interactions Radiative forcing Satellite observation Satellites Sea ice Sea ice concentrations Spatial distribution Statistical analysis Surface temperature Trends |
title | Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Arctic%20Feedback%20Mechanism%20between%20Sea%20Ice%20and%20Low-Level%20Clouds%20Using%2034%20Years%20of%20Satellite%20Observations&rft.jtitle=Journal%20of%20climate&rft.au=Philipp,%20Daniel&rft.date=2020-09-01&rft.volume=33&rft.issue=17&rft.spage=7479&rft.epage=7501&rft.pages=7479-7501&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-19-0895.1&rft_dat=%3Cjstor_proqu%3E26938028%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511380081&rft_id=info:pmid/&rft_jstor_id=26938028&rfr_iscdi=true |