Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations

Satellite-based cloud, radiation flux, and sea ice records covering 34 years are used 1) to investigate autumn cloud cover trends over the Arctic, 2) to assess its relation with declining sea ice using Granger causality (GC) analysis, and 3) to discuss the contribution of the cloud–sea ice (CSI) fee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2020-09, Vol.33 (17), p.7479-7501
Hauptverfasser: Philipp, Daniel, Stengel, Martin, Ahrens, Bodo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7501
container_issue 17
container_start_page 7479
container_title Journal of climate
container_volume 33
creator Philipp, Daniel
Stengel, Martin
Ahrens, Bodo
description Satellite-based cloud, radiation flux, and sea ice records covering 34 years are used 1) to investigate autumn cloud cover trends over the Arctic, 2) to assess its relation with declining sea ice using Granger causality (GC) analysis, and 3) to discuss the contribution of the cloud–sea ice (CSI) feedback to Arctic amplification. This paper provides strong evidence for a positive CSI feedback with the capability to contribute to autumnal Arctic amplification. Positive low-level cloud fractional cover (CFClow) trends over the Arctic ice pack are found in October and November (ON) with magnitudes of up to about +9.6% per decade locally. Statistically significant anticorrelations between sea ice concentration (SIC) and CFClow are observed in ON over melting zones, suggesting an association. The GC analysis indicated a causal two-way interaction between SIC and CFClow. Interpreting the resulting F statistic and its spatial distribution as a relation strength proxy, the influence of SIC on CFClow is likely stronger than the reverse. ERA-Interim reanalysis data suggest that ON CFClow is impacted by sea ice melt through surface–atmosphere coupling via turbulent heat and moisture fluxes. Due to weak solar insolation in ON, net cloud radiative forcing (CRF) exerts a warming effect on the Arctic surface. Increasing CFClow induces a large-scale surface warming trend reaching magnitudes of up to about +8.3 W m−2 per decade locally. Sensitivities of total CRF to CFClow ranges between +0.22 and +0.66 W m−2 per percent CFClow. Increasing surface warming can cause a melt season lengthening and hinders formation of perennial ice.
doi_str_mv 10.1175/jcli-d-19-0895.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2511380081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26938028</jstor_id><sourcerecordid>26938028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-ae6c1af3eb98e97c81e14279ea2bea984d6a081eb3ac6fffb666e07a8c9abb6d3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOD72boSA64xJH2mzHEZHRyqzUBeuwk16q6211SRVxl9vy4irC4fvO3APIWeCz4XI0svGtjUrmVCM5yqdiz0yE2nEGU-SaJ_MxjBheZamh-TI-4ZzEUnOZ2RYdNBuf-ruhYZXpAtnQ23pCrE0YN_oPdpX6Gr_Tg2Gb8SOPiDQtUUKXUmL_psV-IUtXbb9UHr65KeiOKHPCM7TvqIPELBt64B0Yzy6Lwh13_kTclBB6_H07x6Tp9X14_KWFZub9XJRMJtwERigtAKqGI3KUWU2FyiSKFMIkUFQeVJK4GNoYrCyqiojpUSeQW4VGCPL-Jhc7Ho_XP85oA-66Qc3fux1lAoR53zUR4rvKOt67x1W-sPV7-C2WnA9javvlsVaX2mh9DSunpTzndL40Lt_PpJq7Izy-Bdy63hi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511380081</pqid></control><display><type>article</type><title>Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><creator>Philipp, Daniel ; Stengel, Martin ; Ahrens, Bodo</creator><creatorcontrib>Philipp, Daniel ; Stengel, Martin ; Ahrens, Bodo</creatorcontrib><description>Satellite-based cloud, radiation flux, and sea ice records covering 34 years are used 1) to investigate autumn cloud cover trends over the Arctic, 2) to assess its relation with declining sea ice using Granger causality (GC) analysis, and 3) to discuss the contribution of the cloud–sea ice (CSI) feedback to Arctic amplification. This paper provides strong evidence for a positive CSI feedback with the capability to contribute to autumnal Arctic amplification. Positive low-level cloud fractional cover (CFClow) trends over the Arctic ice pack are found in October and November (ON) with magnitudes of up to about +9.6% per decade locally. Statistically significant anticorrelations between sea ice concentration (SIC) and CFClow are observed in ON over melting zones, suggesting an association. The GC analysis indicated a causal two-way interaction between SIC and CFClow. Interpreting the resulting F statistic and its spatial distribution as a relation strength proxy, the influence of SIC on CFClow is likely stronger than the reverse. ERA-Interim reanalysis data suggest that ON CFClow is impacted by sea ice melt through surface–atmosphere coupling via turbulent heat and moisture fluxes. Due to weak solar insolation in ON, net cloud radiative forcing (CRF) exerts a warming effect on the Arctic surface. Increasing CFClow induces a large-scale surface warming trend reaching magnitudes of up to about +8.3 W m−2 per decade locally. Sensitivities of total CRF to CFClow ranges between +0.22 and +0.66 W m−2 per percent CFClow. Increasing surface warming can cause a melt season lengthening and hinders formation of perennial ice.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-19-0895.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Amplification ; Arctic clouds ; Arctic ice ; Arctic sea ice ; Atmospheric turbulence ; Cloud cover ; Clouds ; Feedback ; Fluxes ; Geographical distribution ; Ice formation ; Ice melting ; Radiation ; Radiation flux ; Radiation-cloud interactions ; Radiative forcing ; Satellite observation ; Satellites ; Sea ice ; Sea ice concentrations ; Spatial distribution ; Statistical analysis ; Surface temperature ; Trends</subject><ispartof>Journal of climate, 2020-09, Vol.33 (17), p.7479-7501</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-ae6c1af3eb98e97c81e14279ea2bea984d6a081eb3ac6fffb666e07a8c9abb6d3</citedby><cites>FETCH-LOGICAL-c401t-ae6c1af3eb98e97c81e14279ea2bea984d6a081eb3ac6fffb666e07a8c9abb6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26938028$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26938028$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,3668,27905,27906,57998,58231</link.rule.ids></links><search><creatorcontrib>Philipp, Daniel</creatorcontrib><creatorcontrib>Stengel, Martin</creatorcontrib><creatorcontrib>Ahrens, Bodo</creatorcontrib><title>Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations</title><title>Journal of climate</title><description>Satellite-based cloud, radiation flux, and sea ice records covering 34 years are used 1) to investigate autumn cloud cover trends over the Arctic, 2) to assess its relation with declining sea ice using Granger causality (GC) analysis, and 3) to discuss the contribution of the cloud–sea ice (CSI) feedback to Arctic amplification. This paper provides strong evidence for a positive CSI feedback with the capability to contribute to autumnal Arctic amplification. Positive low-level cloud fractional cover (CFClow) trends over the Arctic ice pack are found in October and November (ON) with magnitudes of up to about +9.6% per decade locally. Statistically significant anticorrelations between sea ice concentration (SIC) and CFClow are observed in ON over melting zones, suggesting an association. The GC analysis indicated a causal two-way interaction between SIC and CFClow. Interpreting the resulting F statistic and its spatial distribution as a relation strength proxy, the influence of SIC on CFClow is likely stronger than the reverse. ERA-Interim reanalysis data suggest that ON CFClow is impacted by sea ice melt through surface–atmosphere coupling via turbulent heat and moisture fluxes. Due to weak solar insolation in ON, net cloud radiative forcing (CRF) exerts a warming effect on the Arctic surface. Increasing CFClow induces a large-scale surface warming trend reaching magnitudes of up to about +8.3 W m−2 per decade locally. Sensitivities of total CRF to CFClow ranges between +0.22 and +0.66 W m−2 per percent CFClow. Increasing surface warming can cause a melt season lengthening and hinders formation of perennial ice.</description><subject>Amplification</subject><subject>Arctic clouds</subject><subject>Arctic ice</subject><subject>Arctic sea ice</subject><subject>Atmospheric turbulence</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>Feedback</subject><subject>Fluxes</subject><subject>Geographical distribution</subject><subject>Ice formation</subject><subject>Ice melting</subject><subject>Radiation</subject><subject>Radiation flux</subject><subject>Radiation-cloud interactions</subject><subject>Radiative forcing</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sea ice</subject><subject>Sea ice concentrations</subject><subject>Spatial distribution</subject><subject>Statistical analysis</subject><subject>Surface temperature</subject><subject>Trends</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOD72boSA64xJH2mzHEZHRyqzUBeuwk16q6211SRVxl9vy4irC4fvO3APIWeCz4XI0svGtjUrmVCM5yqdiz0yE2nEGU-SaJ_MxjBheZamh-TI-4ZzEUnOZ2RYdNBuf-ruhYZXpAtnQ23pCrE0YN_oPdpX6Gr_Tg2Gb8SOPiDQtUUKXUmL_psV-IUtXbb9UHr65KeiOKHPCM7TvqIPELBt64B0Yzy6Lwh13_kTclBB6_H07x6Tp9X14_KWFZub9XJRMJtwERigtAKqGI3KUWU2FyiSKFMIkUFQeVJK4GNoYrCyqiojpUSeQW4VGCPL-Jhc7Ho_XP85oA-66Qc3fux1lAoR53zUR4rvKOt67x1W-sPV7-C2WnA9javvlsVaX2mh9DSunpTzndL40Lt_PpJq7Izy-Bdy63hi</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Philipp, Daniel</creator><creator>Stengel, Martin</creator><creator>Ahrens, Bodo</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20200901</creationdate><title>Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations</title><author>Philipp, Daniel ; Stengel, Martin ; Ahrens, Bodo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-ae6c1af3eb98e97c81e14279ea2bea984d6a081eb3ac6fffb666e07a8c9abb6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplification</topic><topic>Arctic clouds</topic><topic>Arctic ice</topic><topic>Arctic sea ice</topic><topic>Atmospheric turbulence</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>Feedback</topic><topic>Fluxes</topic><topic>Geographical distribution</topic><topic>Ice formation</topic><topic>Ice melting</topic><topic>Radiation</topic><topic>Radiation flux</topic><topic>Radiation-cloud interactions</topic><topic>Radiative forcing</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sea ice</topic><topic>Sea ice concentrations</topic><topic>Spatial distribution</topic><topic>Statistical analysis</topic><topic>Surface temperature</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Philipp, Daniel</creatorcontrib><creatorcontrib>Stengel, Martin</creatorcontrib><creatorcontrib>Ahrens, Bodo</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Philipp, Daniel</au><au>Stengel, Martin</au><au>Ahrens, Bodo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations</atitle><jtitle>Journal of climate</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>33</volume><issue>17</issue><spage>7479</spage><epage>7501</epage><pages>7479-7501</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Satellite-based cloud, radiation flux, and sea ice records covering 34 years are used 1) to investigate autumn cloud cover trends over the Arctic, 2) to assess its relation with declining sea ice using Granger causality (GC) analysis, and 3) to discuss the contribution of the cloud–sea ice (CSI) feedback to Arctic amplification. This paper provides strong evidence for a positive CSI feedback with the capability to contribute to autumnal Arctic amplification. Positive low-level cloud fractional cover (CFClow) trends over the Arctic ice pack are found in October and November (ON) with magnitudes of up to about +9.6% per decade locally. Statistically significant anticorrelations between sea ice concentration (SIC) and CFClow are observed in ON over melting zones, suggesting an association. The GC analysis indicated a causal two-way interaction between SIC and CFClow. Interpreting the resulting F statistic and its spatial distribution as a relation strength proxy, the influence of SIC on CFClow is likely stronger than the reverse. ERA-Interim reanalysis data suggest that ON CFClow is impacted by sea ice melt through surface–atmosphere coupling via turbulent heat and moisture fluxes. Due to weak solar insolation in ON, net cloud radiative forcing (CRF) exerts a warming effect on the Arctic surface. Increasing CFClow induces a large-scale surface warming trend reaching magnitudes of up to about +8.3 W m−2 per decade locally. Sensitivities of total CRF to CFClow ranges between +0.22 and +0.66 W m−2 per percent CFClow. Increasing surface warming can cause a melt season lengthening and hinders formation of perennial ice.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-19-0895.1</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2020-09, Vol.33 (17), p.7479-7501
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2511380081
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy
subjects Amplification
Arctic clouds
Arctic ice
Arctic sea ice
Atmospheric turbulence
Cloud cover
Clouds
Feedback
Fluxes
Geographical distribution
Ice formation
Ice melting
Radiation
Radiation flux
Radiation-cloud interactions
Radiative forcing
Satellite observation
Satellites
Sea ice
Sea ice concentrations
Spatial distribution
Statistical analysis
Surface temperature
Trends
title Analyzing the Arctic Feedback Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Arctic%20Feedback%20Mechanism%20between%20Sea%20Ice%20and%20Low-Level%20Clouds%20Using%2034%20Years%20of%20Satellite%20Observations&rft.jtitle=Journal%20of%20climate&rft.au=Philipp,%20Daniel&rft.date=2020-09-01&rft.volume=33&rft.issue=17&rft.spage=7479&rft.epage=7501&rft.pages=7479-7501&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-19-0895.1&rft_dat=%3Cjstor_proqu%3E26938028%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511380081&rft_id=info:pmid/&rft_jstor_id=26938028&rfr_iscdi=true