Structure of Submesoscale Fronts of the Mississippi River Plume
Submesoscale currents (SMCs), in the forms of fronts, filaments, and vortices, are studied using a high-resolution (~150 m) Regional Oceanic Modeling System (ROMS) simulation in the Mississippi River plume system. Fronts and filaments are identified by large horizontal velocity and buoyancy gradient...
Gespeichert in:
Veröffentlicht in: | Journal of physical oceanography 2021-04, Vol.51 (4), p.1113-1131 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1131 |
---|---|
container_issue | 4 |
container_start_page | 1113 |
container_title | Journal of physical oceanography |
container_volume | 51 |
creator | Wang, Tao Barkan, Roy McWilliams, James C. Molemaker, M. Jeroen |
description | Submesoscale currents (SMCs), in the forms of fronts, filaments, and vortices, are studied using a high-resolution (~150 m) Regional Oceanic Modeling System (ROMS) simulation in the Mississippi River plume system. Fronts and filaments are identified by large horizontal velocity and buoyancy gradients, surface convergence, and cyclonic vertical vorticity with along-coast fronts and along-plume-edge filaments notably evident. Frontogenesis and arrest/destruction are two fundamental phases in the life cycle of fronts and filaments. In the Mississippi River plume region, the horizontal advective tendency induced by confluence and convergence plays a primary role in frontogenesis. Confluent currents sharpen preexisting horizontal buoyancy gradients and initiate frontogenesis. Once the fronts and filaments are formed and the Rossby number reaches
O
(1), they further evolve frontogenetically mainly by convergent secondary circulations, which can be maintained by different cross-front momentum balance regimes. Confluent motions and preexisting horizontal buoyancy gradients depend on the interaction between wind-induced Ekman transport and the spreading plume water. Consequently, the direction of wind has a significant effect on the temporal variability of SMCs, with more active SMCs generated during a coastally downwelling-favorable wind and fewer SMCs during an upwelling-favorable wind. Submesoscale instabilities (~1–3 km) play a primary role in the arrest and fragmentation of most fronts and filaments. These instabilities propagate along the fronts and filaments, and their energy conversion is a mixed barotropic–baroclinic type with horizontal-shear instabilities dominating. |
doi_str_mv | 10.1175/JPO-D-20-0191.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511361386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511361386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-2d0a34dda4dae0b5c1119616d8508231a7f9d027b3ef22644132487a13a6d4913</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRMFbPXgOet52Z3WySk0hr_aDSYvW8bLIbTEmbuJsI_nsbKrwwvMPDDDyM3SJMEdNk9rpZ8wUn4IA5TvGMRZiMTWbJOYsAiLhQKVyyqxB2AKCQ8ojdb3s_lP3gXdxW8XYo9i60oTSNi5e-PfRhXPdfLn6rQxjTdXX8Xv84H2-aYe-u2UVlmuBu_ueEfS4fP-bPfLV-epk_rHhJKu85WTBCWmukNQ6KpETEXKGyWQIZCTRplVugtBCuIlJSoiCZpQaFUVbmKCbs7nS38-334EKvd-3gD8eXmhJEoVBk6kjNTlTp2xC8q3Tn673xvxpBj5b00ZJeaAI9WtIo_gBTcVj1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511361386</pqid></control><display><type>article</type><title>Structure of Submesoscale Fronts of the Mississippi River Plume</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Tao ; Barkan, Roy ; McWilliams, James C. ; Molemaker, M. Jeroen</creator><creatorcontrib>Wang, Tao ; Barkan, Roy ; McWilliams, James C. ; Molemaker, M. Jeroen</creatorcontrib><description>Submesoscale currents (SMCs), in the forms of fronts, filaments, and vortices, are studied using a high-resolution (~150 m) Regional Oceanic Modeling System (ROMS) simulation in the Mississippi River plume system. Fronts and filaments are identified by large horizontal velocity and buoyancy gradients, surface convergence, and cyclonic vertical vorticity with along-coast fronts and along-plume-edge filaments notably evident. Frontogenesis and arrest/destruction are two fundamental phases in the life cycle of fronts and filaments. In the Mississippi River plume region, the horizontal advective tendency induced by confluence and convergence plays a primary role in frontogenesis. Confluent currents sharpen preexisting horizontal buoyancy gradients and initiate frontogenesis. Once the fronts and filaments are formed and the Rossby number reaches
O
(1), they further evolve frontogenetically mainly by convergent secondary circulations, which can be maintained by different cross-front momentum balance regimes. Confluent motions and preexisting horizontal buoyancy gradients depend on the interaction between wind-induced Ekman transport and the spreading plume water. Consequently, the direction of wind has a significant effect on the temporal variability of SMCs, with more active SMCs generated during a coastally downwelling-favorable wind and fewer SMCs during an upwelling-favorable wind. Submesoscale instabilities (~1–3 km) play a primary role in the arrest and fragmentation of most fronts and filaments. These instabilities propagate along the fronts and filaments, and their energy conversion is a mixed barotropic–baroclinic type with horizontal-shear instabilities dominating.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO-D-20-0191.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Barotropic mode ; Buoyancy ; Coastal fronts ; Confluence ; Convergence ; Downwelling ; Ekman transport ; Energy conversion ; Filaments ; Frontogenesis ; Fronts ; Gradients ; Kelvin-Helmholtz instability ; Life cycle ; Life cycles ; Momentum ; Momentum balance ; Ocean circulation ; Ocean models ; River plumes ; Rivers ; Rossby number ; Temporal variability ; Temporal variations ; Upwelling ; Vertical vorticity ; Vorticity ; Wind ; Wind effects</subject><ispartof>Journal of physical oceanography, 2021-04, Vol.51 (4), p.1113-1131</ispartof><rights>Copyright American Meteorological Society Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-2d0a34dda4dae0b5c1119616d8508231a7f9d027b3ef22644132487a13a6d4913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3679,27922,27923</link.rule.ids></links><search><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Barkan, Roy</creatorcontrib><creatorcontrib>McWilliams, James C.</creatorcontrib><creatorcontrib>Molemaker, M. Jeroen</creatorcontrib><title>Structure of Submesoscale Fronts of the Mississippi River Plume</title><title>Journal of physical oceanography</title><description>Submesoscale currents (SMCs), in the forms of fronts, filaments, and vortices, are studied using a high-resolution (~150 m) Regional Oceanic Modeling System (ROMS) simulation in the Mississippi River plume system. Fronts and filaments are identified by large horizontal velocity and buoyancy gradients, surface convergence, and cyclonic vertical vorticity with along-coast fronts and along-plume-edge filaments notably evident. Frontogenesis and arrest/destruction are two fundamental phases in the life cycle of fronts and filaments. In the Mississippi River plume region, the horizontal advective tendency induced by confluence and convergence plays a primary role in frontogenesis. Confluent currents sharpen preexisting horizontal buoyancy gradients and initiate frontogenesis. Once the fronts and filaments are formed and the Rossby number reaches
O
(1), they further evolve frontogenetically mainly by convergent secondary circulations, which can be maintained by different cross-front momentum balance regimes. Confluent motions and preexisting horizontal buoyancy gradients depend on the interaction between wind-induced Ekman transport and the spreading plume water. Consequently, the direction of wind has a significant effect on the temporal variability of SMCs, with more active SMCs generated during a coastally downwelling-favorable wind and fewer SMCs during an upwelling-favorable wind. Submesoscale instabilities (~1–3 km) play a primary role in the arrest and fragmentation of most fronts and filaments. These instabilities propagate along the fronts and filaments, and their energy conversion is a mixed barotropic–baroclinic type with horizontal-shear instabilities dominating.</description><subject>Barotropic mode</subject><subject>Buoyancy</subject><subject>Coastal fronts</subject><subject>Confluence</subject><subject>Convergence</subject><subject>Downwelling</subject><subject>Ekman transport</subject><subject>Energy conversion</subject><subject>Filaments</subject><subject>Frontogenesis</subject><subject>Fronts</subject><subject>Gradients</subject><subject>Kelvin-Helmholtz instability</subject><subject>Life cycle</subject><subject>Life cycles</subject><subject>Momentum</subject><subject>Momentum balance</subject><subject>Ocean circulation</subject><subject>Ocean models</subject><subject>River plumes</subject><subject>Rivers</subject><subject>Rossby number</subject><subject>Temporal variability</subject><subject>Temporal variations</subject><subject>Upwelling</subject><subject>Vertical vorticity</subject><subject>Vorticity</subject><subject>Wind</subject><subject>Wind effects</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1Lw0AQhhdRMFbPXgOet52Z3WySk0hr_aDSYvW8bLIbTEmbuJsI_nsbKrwwvMPDDDyM3SJMEdNk9rpZ8wUn4IA5TvGMRZiMTWbJOYsAiLhQKVyyqxB2AKCQ8ojdb3s_lP3gXdxW8XYo9i60oTSNi5e-PfRhXPdfLn6rQxjTdXX8Xv84H2-aYe-u2UVlmuBu_ueEfS4fP-bPfLV-epk_rHhJKu85WTBCWmukNQ6KpETEXKGyWQIZCTRplVugtBCuIlJSoiCZpQaFUVbmKCbs7nS38-334EKvd-3gD8eXmhJEoVBk6kjNTlTp2xC8q3Tn673xvxpBj5b00ZJeaAI9WtIo_gBTcVj1</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Tao</creator><creator>Barkan, Roy</creator><creator>McWilliams, James C.</creator><creator>Molemaker, M. Jeroen</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20210401</creationdate><title>Structure of Submesoscale Fronts of the Mississippi River Plume</title><author>Wang, Tao ; Barkan, Roy ; McWilliams, James C. ; Molemaker, M. Jeroen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-2d0a34dda4dae0b5c1119616d8508231a7f9d027b3ef22644132487a13a6d4913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barotropic mode</topic><topic>Buoyancy</topic><topic>Coastal fronts</topic><topic>Confluence</topic><topic>Convergence</topic><topic>Downwelling</topic><topic>Ekman transport</topic><topic>Energy conversion</topic><topic>Filaments</topic><topic>Frontogenesis</topic><topic>Fronts</topic><topic>Gradients</topic><topic>Kelvin-Helmholtz instability</topic><topic>Life cycle</topic><topic>Life cycles</topic><topic>Momentum</topic><topic>Momentum balance</topic><topic>Ocean circulation</topic><topic>Ocean models</topic><topic>River plumes</topic><topic>Rivers</topic><topic>Rossby number</topic><topic>Temporal variability</topic><topic>Temporal variations</topic><topic>Upwelling</topic><topic>Vertical vorticity</topic><topic>Vorticity</topic><topic>Wind</topic><topic>Wind effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Barkan, Roy</creatorcontrib><creatorcontrib>McWilliams, James C.</creatorcontrib><creatorcontrib>Molemaker, M. Jeroen</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tao</au><au>Barkan, Roy</au><au>McWilliams, James C.</au><au>Molemaker, M. Jeroen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of Submesoscale Fronts of the Mississippi River Plume</atitle><jtitle>Journal of physical oceanography</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>51</volume><issue>4</issue><spage>1113</spage><epage>1131</epage><pages>1113-1131</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><abstract>Submesoscale currents (SMCs), in the forms of fronts, filaments, and vortices, are studied using a high-resolution (~150 m) Regional Oceanic Modeling System (ROMS) simulation in the Mississippi River plume system. Fronts and filaments are identified by large horizontal velocity and buoyancy gradients, surface convergence, and cyclonic vertical vorticity with along-coast fronts and along-plume-edge filaments notably evident. Frontogenesis and arrest/destruction are two fundamental phases in the life cycle of fronts and filaments. In the Mississippi River plume region, the horizontal advective tendency induced by confluence and convergence plays a primary role in frontogenesis. Confluent currents sharpen preexisting horizontal buoyancy gradients and initiate frontogenesis. Once the fronts and filaments are formed and the Rossby number reaches
O
(1), they further evolve frontogenetically mainly by convergent secondary circulations, which can be maintained by different cross-front momentum balance regimes. Confluent motions and preexisting horizontal buoyancy gradients depend on the interaction between wind-induced Ekman transport and the spreading plume water. Consequently, the direction of wind has a significant effect on the temporal variability of SMCs, with more active SMCs generated during a coastally downwelling-favorable wind and fewer SMCs during an upwelling-favorable wind. Submesoscale instabilities (~1–3 km) play a primary role in the arrest and fragmentation of most fronts and filaments. These instabilities propagate along the fronts and filaments, and their energy conversion is a mixed barotropic–baroclinic type with horizontal-shear instabilities dominating.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO-D-20-0191.1</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3670 |
ispartof | Journal of physical oceanography, 2021-04, Vol.51 (4), p.1113-1131 |
issn | 0022-3670 1520-0485 |
language | eng |
recordid | cdi_proquest_journals_2511361386 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals |
subjects | Barotropic mode Buoyancy Coastal fronts Confluence Convergence Downwelling Ekman transport Energy conversion Filaments Frontogenesis Fronts Gradients Kelvin-Helmholtz instability Life cycle Life cycles Momentum Momentum balance Ocean circulation Ocean models River plumes Rivers Rossby number Temporal variability Temporal variations Upwelling Vertical vorticity Vorticity Wind Wind effects |
title | Structure of Submesoscale Fronts of the Mississippi River Plume |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20Submesoscale%20Fronts%20of%20the%20Mississippi%20River%20Plume&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Wang,%20Tao&rft.date=2021-04-01&rft.volume=51&rft.issue=4&rft.spage=1113&rft.epage=1131&rft.pages=1113-1131&rft.issn=0022-3670&rft.eissn=1520-0485&rft_id=info:doi/10.1175/JPO-D-20-0191.1&rft_dat=%3Cproquest_cross%3E2511361386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511361386&rft_id=info:pmid/&rfr_iscdi=true |