Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method

This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2021-02, Vol.38 (2), p.197-208
Hauptverfasser: Kren, Andrew C., Anthes, Richard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 2
container_start_page 197
container_title Journal of atmospheric and oceanic technology
container_volume 38
creator Kren, Andrew C.
Anthes, Richard A.
description This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), and the Hurricane Weather Research and Forecasting (HWRF) Model, using the three-cornered hat (3CH) method. These estimates are made during the 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) season in the environment of four tropical cyclones from August to October. For temperature and specific and relative humidity, the ERA5, HWRF, and DROP datasets all have similar magnitudes of errors, with ERA5 having the smallest. The error STDs of temperature and specific humidity are less than 0.8 K and 1.0 g kg −1 over most of the troposphere, while relative humidity error STDs increase from less than 5% near the surface to between 10% and 20% in the upper troposphere. The HAMSR bias-corrected data have larger errors, with estimated error STDs of temperature and specific humidity in the lower troposphere between 1.5 and 2.0 K and between 1.5 and 2.5 g kg −1 . HAMSR’s relative humidity error STD increases from approximately 10% in the lower troposphere to 30% in the upper troposphere. The 3CH method error estimates are generally consistent with prior independent estimates of errors and uncertainties for the HAMSR and dropsonde datasets, although they are somewhat larger, likely due to the inclusion of representativeness errors (differences associated with different spatial and temporal scales represented by the data).
doi_str_mv 10.1175/JTECH-D-20-0044.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511360246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511360246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-62cd203c2aeb7a66fb0ef37f13f031774b7f02c8a5b0d112bca67cdab8fff0723</originalsourceid><addsrcrecordid>eNotkM9OwzAMhyMEEuPPA3CLxLngJG0DR7SNDQTiwMY1ctOEFUYynA7EG_DYpMDJsvzJ9u9j7ETAmRC6Or9dTMfzYlJIKADK8kzssJGohq6U9S4bgVaXBVRa7rODlF4AQChRj9j3NPXdG_ZdeOZTokj8CanDYF3i0XPk952l-Ikfjj-6kPIcQ8snFDcphjZD2ESklvcrx2fr2OCaz_HzlXeBz7dEncWQoWUa9g_MYkXOFeNIwZFrM9vze9evYnvE9jyukzv-r4dseT1d5Ex3D7Ob8dVdYfO_fVFL20pQVqJrNNa1b8B5pb1QHpTQumy0B2kvsGqgFUI2FmttW2wuvPegpTpkp397NxTfty715iVuKeSTRlZCqBpkWWdK_FE5fErkvNlQ1kRfRoAZhJtf4WZiJJhBuBHqB98ndX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511360246</pqid></control><display><type>article</type><title>Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kren, Andrew C. ; Anthes, Richard A.</creator><creatorcontrib>Kren, Andrew C. ; Anthes, Richard A.</creatorcontrib><description>This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), and the Hurricane Weather Research and Forecasting (HWRF) Model, using the three-cornered hat (3CH) method. These estimates are made during the 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) season in the environment of four tropical cyclones from August to October. For temperature and specific and relative humidity, the ERA5, HWRF, and DROP datasets all have similar magnitudes of errors, with ERA5 having the smallest. The error STDs of temperature and specific humidity are less than 0.8 K and 1.0 g kg −1 over most of the troposphere, while relative humidity error STDs increase from less than 5% near the surface to between 10% and 20% in the upper troposphere. The HAMSR bias-corrected data have larger errors, with estimated error STDs of temperature and specific humidity in the lower troposphere between 1.5 and 2.0 K and between 1.5 and 2.5 g kg −1 . HAMSR’s relative humidity error STD increases from approximately 10% in the lower troposphere to 30% in the upper troposphere. The 3CH method error estimates are generally consistent with prior independent estimates of errors and uncertainties for the HAMSR and dropsonde datasets, although they are somewhat larger, likely due to the inclusion of representativeness errors (differences associated with different spatial and temporal scales represented by the data).</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-20-0044.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Cyclones ; Datasets ; Dropsonde ; Dropsondes ; Error analysis ; Error correction ; Errors ; Estimates ; High altitude ; Humidity ; Hurricanes ; Integrated circuits ; Lower troposphere ; Microwave radiometers ; Microwave sensors ; MMIC (circuits) ; Operational hazards ; Radiometers ; Random errors ; Relative humidity ; Specific humidity ; Temperature ; Tropical climate ; Tropical cyclones ; Troposphere ; Upper troposphere ; Weather ; Weather forecasting</subject><ispartof>Journal of atmospheric and oceanic technology, 2021-02, Vol.38 (2), p.197-208</ispartof><rights>Copyright American Meteorological Society Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-62cd203c2aeb7a66fb0ef37f13f031774b7f02c8a5b0d112bca67cdab8fff0723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Kren, Andrew C.</creatorcontrib><creatorcontrib>Anthes, Richard A.</creatorcontrib><title>Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method</title><title>Journal of atmospheric and oceanic technology</title><description>This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), and the Hurricane Weather Research and Forecasting (HWRF) Model, using the three-cornered hat (3CH) method. These estimates are made during the 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) season in the environment of four tropical cyclones from August to October. For temperature and specific and relative humidity, the ERA5, HWRF, and DROP datasets all have similar magnitudes of errors, with ERA5 having the smallest. The error STDs of temperature and specific humidity are less than 0.8 K and 1.0 g kg −1 over most of the troposphere, while relative humidity error STDs increase from less than 5% near the surface to between 10% and 20% in the upper troposphere. The HAMSR bias-corrected data have larger errors, with estimated error STDs of temperature and specific humidity in the lower troposphere between 1.5 and 2.0 K and between 1.5 and 2.5 g kg −1 . HAMSR’s relative humidity error STD increases from approximately 10% in the lower troposphere to 30% in the upper troposphere. The 3CH method error estimates are generally consistent with prior independent estimates of errors and uncertainties for the HAMSR and dropsonde datasets, although they are somewhat larger, likely due to the inclusion of representativeness errors (differences associated with different spatial and temporal scales represented by the data).</description><subject>Cyclones</subject><subject>Datasets</subject><subject>Dropsonde</subject><subject>Dropsondes</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Errors</subject><subject>Estimates</subject><subject>High altitude</subject><subject>Humidity</subject><subject>Hurricanes</subject><subject>Integrated circuits</subject><subject>Lower troposphere</subject><subject>Microwave radiometers</subject><subject>Microwave sensors</subject><subject>MMIC (circuits)</subject><subject>Operational hazards</subject><subject>Radiometers</subject><subject>Random errors</subject><subject>Relative humidity</subject><subject>Specific humidity</subject><subject>Temperature</subject><subject>Tropical climate</subject><subject>Tropical cyclones</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkM9OwzAMhyMEEuPPA3CLxLngJG0DR7SNDQTiwMY1ctOEFUYynA7EG_DYpMDJsvzJ9u9j7ETAmRC6Or9dTMfzYlJIKADK8kzssJGohq6U9S4bgVaXBVRa7rODlF4AQChRj9j3NPXdG_ZdeOZTokj8CanDYF3i0XPk952l-Ikfjj-6kPIcQ8snFDcphjZD2ESklvcrx2fr2OCaz_HzlXeBz7dEncWQoWUa9g_MYkXOFeNIwZFrM9vze9evYnvE9jyukzv-r4dseT1d5Ex3D7Ob8dVdYfO_fVFL20pQVqJrNNa1b8B5pb1QHpTQumy0B2kvsGqgFUI2FmttW2wuvPegpTpkp397NxTfty715iVuKeSTRlZCqBpkWWdK_FE5fErkvNlQ1kRfRoAZhJtf4WZiJJhBuBHqB98ndX0</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kren, Andrew C.</creator><creator>Anthes, Richard A.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20210201</creationdate><title>Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method</title><author>Kren, Andrew C. ; Anthes, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-62cd203c2aeb7a66fb0ef37f13f031774b7f02c8a5b0d112bca67cdab8fff0723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cyclones</topic><topic>Datasets</topic><topic>Dropsonde</topic><topic>Dropsondes</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Errors</topic><topic>Estimates</topic><topic>High altitude</topic><topic>Humidity</topic><topic>Hurricanes</topic><topic>Integrated circuits</topic><topic>Lower troposphere</topic><topic>Microwave radiometers</topic><topic>Microwave sensors</topic><topic>MMIC (circuits)</topic><topic>Operational hazards</topic><topic>Radiometers</topic><topic>Random errors</topic><topic>Relative humidity</topic><topic>Specific humidity</topic><topic>Temperature</topic><topic>Tropical climate</topic><topic>Tropical cyclones</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kren, Andrew C.</creatorcontrib><creatorcontrib>Anthes, Richard A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kren, Andrew C.</au><au>Anthes, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>38</volume><issue>2</issue><spage>197</spage><epage>208</epage><pages>197-208</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), and the Hurricane Weather Research and Forecasting (HWRF) Model, using the three-cornered hat (3CH) method. These estimates are made during the 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) season in the environment of four tropical cyclones from August to October. For temperature and specific and relative humidity, the ERA5, HWRF, and DROP datasets all have similar magnitudes of errors, with ERA5 having the smallest. The error STDs of temperature and specific humidity are less than 0.8 K and 1.0 g kg −1 over most of the troposphere, while relative humidity error STDs increase from less than 5% near the surface to between 10% and 20% in the upper troposphere. The HAMSR bias-corrected data have larger errors, with estimated error STDs of temperature and specific humidity in the lower troposphere between 1.5 and 2.0 K and between 1.5 and 2.5 g kg −1 . HAMSR’s relative humidity error STD increases from approximately 10% in the lower troposphere to 30% in the upper troposphere. The 3CH method error estimates are generally consistent with prior independent estimates of errors and uncertainties for the HAMSR and dropsonde datasets, although they are somewhat larger, likely due to the inclusion of representativeness errors (differences associated with different spatial and temporal scales represented by the data).</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-20-0044.1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2021-02, Vol.38 (2), p.197-208
issn 0739-0572
1520-0426
language eng
recordid cdi_proquest_journals_2511360246
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Cyclones
Datasets
Dropsonde
Dropsondes
Error analysis
Error correction
Errors
Estimates
High altitude
Humidity
Hurricanes
Integrated circuits
Lower troposphere
Microwave radiometers
Microwave sensors
MMIC (circuits)
Operational hazards
Radiometers
Random errors
Relative humidity
Specific humidity
Temperature
Tropical climate
Tropical cyclones
Troposphere
Upper troposphere
Weather
Weather forecasting
title Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Error%20Variances%20of%20a%20Microwave%20Sensor%20and%20Dropsondes%20aboard%20the%20Global%20Hawk%20in%20Hurricanes%20Using%20the%20Three-Cornered%20Hat%20Method&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Kren,%20Andrew%20C.&rft.date=2021-02-01&rft.volume=38&rft.issue=2&rft.spage=197&rft.epage=208&rft.pages=197-208&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-20-0044.1&rft_dat=%3Cproquest_cross%3E2511360246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511360246&rft_id=info:pmid/&rfr_iscdi=true