Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method
This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECM...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2021-02, Vol.38 (2), p.197-208 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 2 |
container_start_page | 197 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 38 |
creator | Kren, Andrew C. Anthes, Richard A. |
description | This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), and the Hurricane Weather Research and Forecasting (HWRF) Model, using the three-cornered hat (3CH) method. These estimates are made during the 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) season in the environment of four tropical cyclones from August to October. For temperature and specific and relative humidity, the ERA5, HWRF, and DROP datasets all have similar magnitudes of errors, with ERA5 having the smallest. The error STDs of temperature and specific humidity are less than 0.8 K and 1.0 g kg
−1
over most of the troposphere, while relative humidity error STDs increase from less than 5% near the surface to between 10% and 20% in the upper troposphere. The HAMSR bias-corrected data have larger errors, with estimated error STDs of temperature and specific humidity in the lower troposphere between 1.5 and 2.0 K and between 1.5 and 2.5 g kg
−1
. HAMSR’s relative humidity error STD increases from approximately 10% in the lower troposphere to 30% in the upper troposphere. The 3CH method error estimates are generally consistent with prior independent estimates of errors and uncertainties for the HAMSR and dropsonde datasets, although they are somewhat larger, likely due to the inclusion of representativeness errors (differences associated with different spatial and temporal scales represented by the data). |
doi_str_mv | 10.1175/JTECH-D-20-0044.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511360246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511360246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-62cd203c2aeb7a66fb0ef37f13f031774b7f02c8a5b0d112bca67cdab8fff0723</originalsourceid><addsrcrecordid>eNotkM9OwzAMhyMEEuPPA3CLxLngJG0DR7SNDQTiwMY1ctOEFUYynA7EG_DYpMDJsvzJ9u9j7ETAmRC6Or9dTMfzYlJIKADK8kzssJGohq6U9S4bgVaXBVRa7rODlF4AQChRj9j3NPXdG_ZdeOZTokj8CanDYF3i0XPk952l-Ikfjj-6kPIcQ8snFDcphjZD2ESklvcrx2fr2OCaz_HzlXeBz7dEncWQoWUa9g_MYkXOFeNIwZFrM9vze9evYnvE9jyukzv-r4dseT1d5Ex3D7Ob8dVdYfO_fVFL20pQVqJrNNa1b8B5pb1QHpTQumy0B2kvsGqgFUI2FmttW2wuvPegpTpkp397NxTfty715iVuKeSTRlZCqBpkWWdK_FE5fErkvNlQ1kRfRoAZhJtf4WZiJJhBuBHqB98ndX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511360246</pqid></control><display><type>article</type><title>Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kren, Andrew C. ; Anthes, Richard A.</creator><creatorcontrib>Kren, Andrew C. ; Anthes, Richard A.</creatorcontrib><description>This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), and the Hurricane Weather Research and Forecasting (HWRF) Model, using the three-cornered hat (3CH) method. These estimates are made during the 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) season in the environment of four tropical cyclones from August to October. For temperature and specific and relative humidity, the ERA5, HWRF, and DROP datasets all have similar magnitudes of errors, with ERA5 having the smallest. The error STDs of temperature and specific humidity are less than 0.8 K and 1.0 g kg
−1
over most of the troposphere, while relative humidity error STDs increase from less than 5% near the surface to between 10% and 20% in the upper troposphere. The HAMSR bias-corrected data have larger errors, with estimated error STDs of temperature and specific humidity in the lower troposphere between 1.5 and 2.0 K and between 1.5 and 2.5 g kg
−1
. HAMSR’s relative humidity error STD increases from approximately 10% in the lower troposphere to 30% in the upper troposphere. The 3CH method error estimates are generally consistent with prior independent estimates of errors and uncertainties for the HAMSR and dropsonde datasets, although they are somewhat larger, likely due to the inclusion of representativeness errors (differences associated with different spatial and temporal scales represented by the data).</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-20-0044.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Cyclones ; Datasets ; Dropsonde ; Dropsondes ; Error analysis ; Error correction ; Errors ; Estimates ; High altitude ; Humidity ; Hurricanes ; Integrated circuits ; Lower troposphere ; Microwave radiometers ; Microwave sensors ; MMIC (circuits) ; Operational hazards ; Radiometers ; Random errors ; Relative humidity ; Specific humidity ; Temperature ; Tropical climate ; Tropical cyclones ; Troposphere ; Upper troposphere ; Weather ; Weather forecasting</subject><ispartof>Journal of atmospheric and oceanic technology, 2021-02, Vol.38 (2), p.197-208</ispartof><rights>Copyright American Meteorological Society Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-62cd203c2aeb7a66fb0ef37f13f031774b7f02c8a5b0d112bca67cdab8fff0723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Kren, Andrew C.</creatorcontrib><creatorcontrib>Anthes, Richard A.</creatorcontrib><title>Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method</title><title>Journal of atmospheric and oceanic technology</title><description>This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), and the Hurricane Weather Research and Forecasting (HWRF) Model, using the three-cornered hat (3CH) method. These estimates are made during the 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) season in the environment of four tropical cyclones from August to October. For temperature and specific and relative humidity, the ERA5, HWRF, and DROP datasets all have similar magnitudes of errors, with ERA5 having the smallest. The error STDs of temperature and specific humidity are less than 0.8 K and 1.0 g kg
−1
over most of the troposphere, while relative humidity error STDs increase from less than 5% near the surface to between 10% and 20% in the upper troposphere. The HAMSR bias-corrected data have larger errors, with estimated error STDs of temperature and specific humidity in the lower troposphere between 1.5 and 2.0 K and between 1.5 and 2.5 g kg
−1
. HAMSR’s relative humidity error STD increases from approximately 10% in the lower troposphere to 30% in the upper troposphere. The 3CH method error estimates are generally consistent with prior independent estimates of errors and uncertainties for the HAMSR and dropsonde datasets, although they are somewhat larger, likely due to the inclusion of representativeness errors (differences associated with different spatial and temporal scales represented by the data).</description><subject>Cyclones</subject><subject>Datasets</subject><subject>Dropsonde</subject><subject>Dropsondes</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Errors</subject><subject>Estimates</subject><subject>High altitude</subject><subject>Humidity</subject><subject>Hurricanes</subject><subject>Integrated circuits</subject><subject>Lower troposphere</subject><subject>Microwave radiometers</subject><subject>Microwave sensors</subject><subject>MMIC (circuits)</subject><subject>Operational hazards</subject><subject>Radiometers</subject><subject>Random errors</subject><subject>Relative humidity</subject><subject>Specific humidity</subject><subject>Temperature</subject><subject>Tropical climate</subject><subject>Tropical cyclones</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkM9OwzAMhyMEEuPPA3CLxLngJG0DR7SNDQTiwMY1ctOEFUYynA7EG_DYpMDJsvzJ9u9j7ETAmRC6Or9dTMfzYlJIKADK8kzssJGohq6U9S4bgVaXBVRa7rODlF4AQChRj9j3NPXdG_ZdeOZTokj8CanDYF3i0XPk952l-Ikfjj-6kPIcQ8snFDcphjZD2ESklvcrx2fr2OCaz_HzlXeBz7dEncWQoWUa9g_MYkXOFeNIwZFrM9vze9evYnvE9jyukzv-r4dseT1d5Ex3D7Ob8dVdYfO_fVFL20pQVqJrNNa1b8B5pb1QHpTQumy0B2kvsGqgFUI2FmttW2wuvPegpTpkp397NxTfty715iVuKeSTRlZCqBpkWWdK_FE5fErkvNlQ1kRfRoAZhJtf4WZiJJhBuBHqB98ndX0</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kren, Andrew C.</creator><creator>Anthes, Richard A.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20210201</creationdate><title>Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method</title><author>Kren, Andrew C. ; Anthes, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-62cd203c2aeb7a66fb0ef37f13f031774b7f02c8a5b0d112bca67cdab8fff0723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cyclones</topic><topic>Datasets</topic><topic>Dropsonde</topic><topic>Dropsondes</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Errors</topic><topic>Estimates</topic><topic>High altitude</topic><topic>Humidity</topic><topic>Hurricanes</topic><topic>Integrated circuits</topic><topic>Lower troposphere</topic><topic>Microwave radiometers</topic><topic>Microwave sensors</topic><topic>MMIC (circuits)</topic><topic>Operational hazards</topic><topic>Radiometers</topic><topic>Random errors</topic><topic>Relative humidity</topic><topic>Specific humidity</topic><topic>Temperature</topic><topic>Tropical climate</topic><topic>Tropical cyclones</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kren, Andrew C.</creatorcontrib><creatorcontrib>Anthes, Richard A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kren, Andrew C.</au><au>Anthes, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>38</volume><issue>2</issue><spage>197</spage><epage>208</epage><pages>197-208</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), and the Hurricane Weather Research and Forecasting (HWRF) Model, using the three-cornered hat (3CH) method. These estimates are made during the 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) season in the environment of four tropical cyclones from August to October. For temperature and specific and relative humidity, the ERA5, HWRF, and DROP datasets all have similar magnitudes of errors, with ERA5 having the smallest. The error STDs of temperature and specific humidity are less than 0.8 K and 1.0 g kg
−1
over most of the troposphere, while relative humidity error STDs increase from less than 5% near the surface to between 10% and 20% in the upper troposphere. The HAMSR bias-corrected data have larger errors, with estimated error STDs of temperature and specific humidity in the lower troposphere between 1.5 and 2.0 K and between 1.5 and 2.5 g kg
−1
. HAMSR’s relative humidity error STD increases from approximately 10% in the lower troposphere to 30% in the upper troposphere. The 3CH method error estimates are generally consistent with prior independent estimates of errors and uncertainties for the HAMSR and dropsonde datasets, although they are somewhat larger, likely due to the inclusion of representativeness errors (differences associated with different spatial and temporal scales represented by the data).</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-20-0044.1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2021-02, Vol.38 (2), p.197-208 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_journals_2511360246 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Cyclones Datasets Dropsonde Dropsondes Error analysis Error correction Errors Estimates High altitude Humidity Hurricanes Integrated circuits Lower troposphere Microwave radiometers Microwave sensors MMIC (circuits) Operational hazards Radiometers Random errors Relative humidity Specific humidity Temperature Tropical climate Tropical cyclones Troposphere Upper troposphere Weather Weather forecasting |
title | Estimating Error Variances of a Microwave Sensor and Dropsondes aboard the Global Hawk in Hurricanes Using the Three-Cornered Hat Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Error%20Variances%20of%20a%20Microwave%20Sensor%20and%20Dropsondes%20aboard%20the%20Global%20Hawk%20in%20Hurricanes%20Using%20the%20Three-Cornered%20Hat%20Method&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Kren,%20Andrew%20C.&rft.date=2021-02-01&rft.volume=38&rft.issue=2&rft.spage=197&rft.epage=208&rft.pages=197-208&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-20-0044.1&rft_dat=%3Cproquest_cross%3E2511360246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511360246&rft_id=info:pmid/&rfr_iscdi=true |