Saharan Dust Aerosols Change Deep Convective Cloud Prevalence, Possibly by Inhibiting Marine New Particle Formation

Deep convective clouds (DCCs) are important to global climate, atmospheric chemistry, and precipitation. Dust, a dominant aerosol type over the tropical North Atlantic, has potentially large microphysical impacts on DCCs over this region. However, dust effects are difficult to identify, being confou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2020-11, Vol.33 (21), p.9467-9480
Hauptverfasser: Zamora, Lauren M., Kahn, Ralph A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9480
container_issue 21
container_start_page 9467
container_title Journal of climate
container_volume 33
creator Zamora, Lauren M.
Kahn, Ralph A.
description Deep convective clouds (DCCs) are important to global climate, atmospheric chemistry, and precipitation. Dust, a dominant aerosol type over the tropical North Atlantic, has potentially large microphysical impacts on DCCs over this region. However, dust effects are difficult to identify, being confounded by covarying meteorology and other factors. Here, a method is developed to quantify DCC responses to dust and other aerosols at large spatial and temporal scales despite these uncertainties. Over 7 million tropical North Atlantic cloud, aerosol, and meteorological profiles from CloudSat satellite data and MERRA-2 reanalysis products are used to stratify cloud observations into meteorological regimes, objectively select a priori assumptions, and iteratively test uncertainty sensitivity. Dust is robustly associated with a 54% increase in DCC prevalence. However, marine aerosol proxy concentrations are 5 times more predictive of dust-associated increases in DCC prevalence than the dust itself, or any other aerosol or meteorological factor. Marine aerosols are also the most predictive factor for the even larger increases in DCC prevalence (61%–87%) associated with enhanced dimethyl sulfide and combustion and sulfate aerosols. Dust-associated increases in DCC prevalence are smaller at high dust concentrations than at low concentrations. These observations suggest that not only is dust a comparatively ineffective CCN source, but it may also act as a condensation/coagulation sink for chemical precursors to CCN, reducing total CCN availability over large spatial scales by inhibiting new particle formation from marine emissions. These observations represent the first time this process, previously predicted by models, has been supported and quantified by measurements.
doi_str_mv 10.1175/jcli-d-20-0083.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2511355242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27076042</jstor_id><sourcerecordid>27076042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a3ef504dda9b406d6e57c919405d58f098381df0a3425f1ce68e1ebe023d51673</originalsourceid><addsrcrecordid>eNo9UM9r2zAUFqODZV3vO2wg2LXuniTLlo_BabeMrA20PQvZfm4UHCmT5JT893XI6Onx-H7xfYR8ZXDDWCl_btvBZl3GIQNQ4oZ9IDMmT1-e8wsyA1XlmSql_EQ-x7gFYLwAmJH4aDYmGEcXY0x0jsFHP0Rab4x7QbpA3NPauwO2yR6Q1oMfO7oOeDADuhav6drHaJvhSJsjXbqNbWyy7oX-NcE6pPf4StcmJNsOSO982JlkvftCPvZmiHj1_16S57vbp_p3tnr4taznq6wVClJmBPYS8q4zVZND0RUoy7ZiVQ6yk6qHSgnFuh6MyLnsWYuFQoYNAhedZEUpLsmPs-8--H8jxqS3fgxuitRcMiak5DmfWHBmtVP3GLDX-2B3Jhw1A32aVv-pV0u90Bz0aVrNJsm3s8SZaLRLYTIEDhKgZEpM8PczvI3Jh3c7XkJZwJT4Bg_gfvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511355242</pqid></control><display><type>article</type><title>Saharan Dust Aerosols Change Deep Convective Cloud Prevalence, Possibly by Inhibiting Marine New Particle Formation</title><source>Free E-Journal (出版社公開部分のみ)</source><source>美国气象学会期刊(NSTL购买)</source><source>NASA Technical Reports Server</source><source>JSTOR</source><creator>Zamora, Lauren M. ; Kahn, Ralph A.</creator><creatorcontrib>Zamora, Lauren M. ; Kahn, Ralph A.</creatorcontrib><description>Deep convective clouds (DCCs) are important to global climate, atmospheric chemistry, and precipitation. Dust, a dominant aerosol type over the tropical North Atlantic, has potentially large microphysical impacts on DCCs over this region. However, dust effects are difficult to identify, being confounded by covarying meteorology and other factors. Here, a method is developed to quantify DCC responses to dust and other aerosols at large spatial and temporal scales despite these uncertainties. Over 7 million tropical North Atlantic cloud, aerosol, and meteorological profiles from CloudSat satellite data and MERRA-2 reanalysis products are used to stratify cloud observations into meteorological regimes, objectively select a priori assumptions, and iteratively test uncertainty sensitivity. Dust is robustly associated with a 54% increase in DCC prevalence. However, marine aerosol proxy concentrations are 5 times more predictive of dust-associated increases in DCC prevalence than the dust itself, or any other aerosol or meteorological factor. Marine aerosols are also the most predictive factor for the even larger increases in DCC prevalence (61%–87%) associated with enhanced dimethyl sulfide and combustion and sulfate aerosols. Dust-associated increases in DCC prevalence are smaller at high dust concentrations than at low concentrations. These observations suggest that not only is dust a comparatively ineffective CCN source, but it may also act as a condensation/coagulation sink for chemical precursors to CCN, reducing total CCN availability over large spatial scales by inhibiting new particle formation from marine emissions. These observations represent the first time this process, previously predicted by models, has been supported and quantified by measurements.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-20-0083.1</identifier><language>eng</language><publisher>Goddard Space Flight Center: American Meteorological Society</publisher><subject>Aerosol concentrations ; Aerosols ; Atmospheric chemistry ; Atmospheric models ; Atmospheric particulates ; Chemical precipitation ; Cloud formation ; Cloud observations ; Clouds ; Coagulation ; Condensates ; Convective clouds ; Dimethyl sulfide ; Dust ; Dust effects ; Dust storms ; Geosciences (General) ; Global climate ; Low concentrations ; Marine aerosols ; Marine meteorology ; Meteorological regimes ; Meteorology ; Particle formation ; Saharan dust ; Satellite data ; Sensitivity analysis ; SPECIAL COLLECTION: MERRA-2 ; Sulfate aerosols ; Sulphides ; Tropical climate ; Uncertainty</subject><ispartof>Journal of climate, 2020-11, Vol.33 (21), p.9467-9480</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright Determination: GOV_PERMITTED</rights><rights>Copyright American Meteorological Society Nov 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a3ef504dda9b406d6e57c919405d58f098381df0a3425f1ce68e1ebe023d51673</citedby><cites>FETCH-LOGICAL-c380t-a3ef504dda9b406d6e57c919405d58f098381df0a3425f1ce68e1ebe023d51673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27076042$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27076042$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,800,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Zamora, Lauren M.</creatorcontrib><creatorcontrib>Kahn, Ralph A.</creatorcontrib><title>Saharan Dust Aerosols Change Deep Convective Cloud Prevalence, Possibly by Inhibiting Marine New Particle Formation</title><title>Journal of climate</title><description>Deep convective clouds (DCCs) are important to global climate, atmospheric chemistry, and precipitation. Dust, a dominant aerosol type over the tropical North Atlantic, has potentially large microphysical impacts on DCCs over this region. However, dust effects are difficult to identify, being confounded by covarying meteorology and other factors. Here, a method is developed to quantify DCC responses to dust and other aerosols at large spatial and temporal scales despite these uncertainties. Over 7 million tropical North Atlantic cloud, aerosol, and meteorological profiles from CloudSat satellite data and MERRA-2 reanalysis products are used to stratify cloud observations into meteorological regimes, objectively select a priori assumptions, and iteratively test uncertainty sensitivity. Dust is robustly associated with a 54% increase in DCC prevalence. However, marine aerosol proxy concentrations are 5 times more predictive of dust-associated increases in DCC prevalence than the dust itself, or any other aerosol or meteorological factor. Marine aerosols are also the most predictive factor for the even larger increases in DCC prevalence (61%–87%) associated with enhanced dimethyl sulfide and combustion and sulfate aerosols. Dust-associated increases in DCC prevalence are smaller at high dust concentrations than at low concentrations. These observations suggest that not only is dust a comparatively ineffective CCN source, but it may also act as a condensation/coagulation sink for chemical precursors to CCN, reducing total CCN availability over large spatial scales by inhibiting new particle formation from marine emissions. These observations represent the first time this process, previously predicted by models, has been supported and quantified by measurements.</description><subject>Aerosol concentrations</subject><subject>Aerosols</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric models</subject><subject>Atmospheric particulates</subject><subject>Chemical precipitation</subject><subject>Cloud formation</subject><subject>Cloud observations</subject><subject>Clouds</subject><subject>Coagulation</subject><subject>Condensates</subject><subject>Convective clouds</subject><subject>Dimethyl sulfide</subject><subject>Dust</subject><subject>Dust effects</subject><subject>Dust storms</subject><subject>Geosciences (General)</subject><subject>Global climate</subject><subject>Low concentrations</subject><subject>Marine aerosols</subject><subject>Marine meteorology</subject><subject>Meteorological regimes</subject><subject>Meteorology</subject><subject>Particle formation</subject><subject>Saharan dust</subject><subject>Satellite data</subject><subject>Sensitivity analysis</subject><subject>SPECIAL COLLECTION: MERRA-2</subject><subject>Sulfate aerosols</subject><subject>Sulphides</subject><subject>Tropical climate</subject><subject>Uncertainty</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNo9UM9r2zAUFqODZV3vO2wg2LXuniTLlo_BabeMrA20PQvZfm4UHCmT5JT893XI6Onx-H7xfYR8ZXDDWCl_btvBZl3GIQNQ4oZ9IDMmT1-e8wsyA1XlmSql_EQ-x7gFYLwAmJH4aDYmGEcXY0x0jsFHP0Rab4x7QbpA3NPauwO2yR6Q1oMfO7oOeDADuhav6drHaJvhSJsjXbqNbWyy7oX-NcE6pPf4StcmJNsOSO982JlkvftCPvZmiHj1_16S57vbp_p3tnr4taznq6wVClJmBPYS8q4zVZND0RUoy7ZiVQ6yk6qHSgnFuh6MyLnsWYuFQoYNAhedZEUpLsmPs-8--H8jxqS3fgxuitRcMiak5DmfWHBmtVP3GLDX-2B3Jhw1A32aVv-pV0u90Bz0aVrNJsm3s8SZaLRLYTIEDhKgZEpM8PczvI3Jh3c7XkJZwJT4Bg_gfvY</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zamora, Lauren M.</creator><creator>Kahn, Ralph A.</creator><general>American Meteorological Society</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20201101</creationdate><title>Saharan Dust Aerosols Change Deep Convective Cloud Prevalence, Possibly by Inhibiting Marine New Particle Formation</title><author>Zamora, Lauren M. ; Kahn, Ralph A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a3ef504dda9b406d6e57c919405d58f098381df0a3425f1ce68e1ebe023d51673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosol concentrations</topic><topic>Aerosols</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric models</topic><topic>Atmospheric particulates</topic><topic>Chemical precipitation</topic><topic>Cloud formation</topic><topic>Cloud observations</topic><topic>Clouds</topic><topic>Coagulation</topic><topic>Condensates</topic><topic>Convective clouds</topic><topic>Dimethyl sulfide</topic><topic>Dust</topic><topic>Dust effects</topic><topic>Dust storms</topic><topic>Geosciences (General)</topic><topic>Global climate</topic><topic>Low concentrations</topic><topic>Marine aerosols</topic><topic>Marine meteorology</topic><topic>Meteorological regimes</topic><topic>Meteorology</topic><topic>Particle formation</topic><topic>Saharan dust</topic><topic>Satellite data</topic><topic>Sensitivity analysis</topic><topic>SPECIAL COLLECTION: MERRA-2</topic><topic>Sulfate aerosols</topic><topic>Sulphides</topic><topic>Tropical climate</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamora, Lauren M.</creatorcontrib><creatorcontrib>Kahn, Ralph A.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamora, Lauren M.</au><au>Kahn, Ralph A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saharan Dust Aerosols Change Deep Convective Cloud Prevalence, Possibly by Inhibiting Marine New Particle Formation</atitle><jtitle>Journal of climate</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>33</volume><issue>21</issue><spage>9467</spage><epage>9480</epage><pages>9467-9480</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Deep convective clouds (DCCs) are important to global climate, atmospheric chemistry, and precipitation. Dust, a dominant aerosol type over the tropical North Atlantic, has potentially large microphysical impacts on DCCs over this region. However, dust effects are difficult to identify, being confounded by covarying meteorology and other factors. Here, a method is developed to quantify DCC responses to dust and other aerosols at large spatial and temporal scales despite these uncertainties. Over 7 million tropical North Atlantic cloud, aerosol, and meteorological profiles from CloudSat satellite data and MERRA-2 reanalysis products are used to stratify cloud observations into meteorological regimes, objectively select a priori assumptions, and iteratively test uncertainty sensitivity. Dust is robustly associated with a 54% increase in DCC prevalence. However, marine aerosol proxy concentrations are 5 times more predictive of dust-associated increases in DCC prevalence than the dust itself, or any other aerosol or meteorological factor. Marine aerosols are also the most predictive factor for the even larger increases in DCC prevalence (61%–87%) associated with enhanced dimethyl sulfide and combustion and sulfate aerosols. Dust-associated increases in DCC prevalence are smaller at high dust concentrations than at low concentrations. These observations suggest that not only is dust a comparatively ineffective CCN source, but it may also act as a condensation/coagulation sink for chemical precursors to CCN, reducing total CCN availability over large spatial scales by inhibiting new particle formation from marine emissions. These observations represent the first time this process, previously predicted by models, has been supported and quantified by measurements.</abstract><cop>Goddard Space Flight Center</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-20-0083.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2020-11, Vol.33 (21), p.9467-9480
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2511355242
source Free E-Journal (出版社公開部分のみ); 美国气象学会期刊(NSTL购买); NASA Technical Reports Server; JSTOR
subjects Aerosol concentrations
Aerosols
Atmospheric chemistry
Atmospheric models
Atmospheric particulates
Chemical precipitation
Cloud formation
Cloud observations
Clouds
Coagulation
Condensates
Convective clouds
Dimethyl sulfide
Dust
Dust effects
Dust storms
Geosciences (General)
Global climate
Low concentrations
Marine aerosols
Marine meteorology
Meteorological regimes
Meteorology
Particle formation
Saharan dust
Satellite data
Sensitivity analysis
SPECIAL COLLECTION: MERRA-2
Sulfate aerosols
Sulphides
Tropical climate
Uncertainty
title Saharan Dust Aerosols Change Deep Convective Cloud Prevalence, Possibly by Inhibiting Marine New Particle Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saharan%20Dust%20Aerosols%20Change%20Deep%20Convective%20Cloud%20Prevalence,%20Possibly%20by%20Inhibiting%20Marine%20New%20Particle%20Formation&rft.jtitle=Journal%20of%20climate&rft.au=Zamora,%20Lauren%20M.&rft.date=2020-11-01&rft.volume=33&rft.issue=21&rft.spage=9467&rft.epage=9480&rft.pages=9467-9480&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-20-0083.1&rft_dat=%3Cjstor_proqu%3E27076042%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511355242&rft_id=info:pmid/&rft_jstor_id=27076042&rfr_iscdi=true