Contribution of Ocean Physics and Dynamics at Different Scales to Heat Uptake in Low-Resolution AOGCMs
Using an ensemble of atmosphere–ocean general circulation models (AOGCMs) in an idealized climate change experiment, this study quantifies the contributions to ocean heat uptake (OHU) from ocean physical parameterizations and resolved dynamical processes operating at different scales. Analysis of he...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2021-03, Vol.34 (6), p.2017-2035 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2035 |
---|---|
container_issue | 6 |
container_start_page | 2017 |
container_title | Journal of climate |
container_volume | 34 |
creator | Saenko, Oleg A. Gregory, Jonathan M. Griffies, Stephen M. Couldrey, Matthew P. Dias, Fabio Boeira |
description | Using an ensemble of atmosphere–ocean general circulation models (AOGCMs) in an idealized climate change experiment, this study quantifies the contributions to ocean heat uptake (OHU) from ocean physical parameterizations and resolved dynamical processes operating at different scales. Analysis of heat budget diagnostics reveals a leading-order global heat balance in the subsurface upper ocean in a steady state between the large-scale circulation warming it and mesoscale processes cooling it, and shows that there are positive contributions from processes on all scales to the subsurface OHU during climate change. There is better agreement among the AOGCMs in the net OHU than in the individual scales/processes contributing to it. In the upper ocean and at high latitudes, OHU is dominated by small-scale diapycnal processes. Below 400 m, OHU is dominated by the superresidual transport, representing large-scale ocean dynamics combined with all parameterized mesoscale and submesoscale eddy effects. Weakening of the AMOC leads to less heat convergence in the subpolar North Atlantic and less heat divergence at lower latitudes, with a small overall effect on the net Atlantic heat content. At low latitudes, the dominance of advective heat redistribution is contrary to the diffusive OHU mechanism assumed by the commonly used upwelling-diffusion model. Using a density water-mass framework, it is found that most of the OHU occurs along isopycnal directions. This feature of OHU is used to accurately reconstruct the global vertical ocean warming profile from the surface heat flux anomalies, supporting advective (rather than diffusive) models of OHU and sea level rise. |
doi_str_mv | 10.1175/JCLI-D-20-0652.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2511353673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27076196</jstor_id><sourcerecordid>27076196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-c24365c654881ca6088d99f92ab3965a7061d8f080d326e9c96d17479ab95e343</originalsourceid><addsrcrecordid>eNo9kM9LwzAcxYMoOKd3L0LAc2d-NElzlE63SWWi7hyyNMHOrZlJhuy_t7Xi6cvj-3nvwQPgGqMJxoLdPZXVIptmBGWIMzLBJ2CEWa_ynJyCESpknhWCsXNwEeMGIUw4QiPgSt-m0KwPqfEt9A4ujdUtfPk4xsZEqNsaTo-t3v2KBKeNczbYNsE3o7c2wuTh3HaP1T7pTwubFlb-O3u10W-HyPvlrHyOl-DM6W20V393DFaPD-_lPKuWs0V5X2WGUpYyQ3LKmeEsLwpsNEdFUUvpJNFrKjnTAnFcFw4VqKaEW2kkr7HIhdRrySzN6RjcDrn74L8ONia18YfQdpWKMIwpo1zQjkIDZYKPMVin9qHZ6XBUGKl-TdWvqaaKINWvqXBnuRksm5h8-OeJQIJjyekPa5Fv5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511353673</pqid></control><display><type>article</type><title>Contribution of Ocean Physics and Dynamics at Different Scales to Heat Uptake in Low-Resolution AOGCMs</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saenko, Oleg A. ; Gregory, Jonathan M. ; Griffies, Stephen M. ; Couldrey, Matthew P. ; Dias, Fabio Boeira</creator><creatorcontrib>Saenko, Oleg A. ; Gregory, Jonathan M. ; Griffies, Stephen M. ; Couldrey, Matthew P. ; Dias, Fabio Boeira</creatorcontrib><description>Using an ensemble of atmosphere–ocean general circulation models (AOGCMs) in an idealized climate change experiment, this study quantifies the contributions to ocean heat uptake (OHU) from ocean physical parameterizations and resolved dynamical processes operating at different scales. Analysis of heat budget diagnostics reveals a leading-order global heat balance in the subsurface upper ocean in a steady state between the large-scale circulation warming it and mesoscale processes cooling it, and shows that there are positive contributions from processes on all scales to the subsurface OHU during climate change. There is better agreement among the AOGCMs in the net OHU than in the individual scales/processes contributing to it. In the upper ocean and at high latitudes, OHU is dominated by small-scale diapycnal processes. Below 400 m, OHU is dominated by the superresidual transport, representing large-scale ocean dynamics combined with all parameterized mesoscale and submesoscale eddy effects. Weakening of the AMOC leads to less heat convergence in the subpolar North Atlantic and less heat divergence at lower latitudes, with a small overall effect on the net Atlantic heat content. At low latitudes, the dominance of advective heat redistribution is contrary to the diffusive OHU mechanism assumed by the commonly used upwelling-diffusion model. Using a density water-mass framework, it is found that most of the OHU occurs along isopycnal directions. This feature of OHU is used to accurately reconstruct the global vertical ocean warming profile from the surface heat flux anomalies, supporting advective (rather than diffusive) models of OHU and sea level rise.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-20-0652.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Anomalies ; Atmospheric circulation ; Atmospheric models ; Climate change ; Climate models ; Dynamics ; Enthalpy ; General circulation models ; Heat balance ; Heat budget ; Heat content ; Heat flux ; Heat transfer ; Induction heating ; Latitude ; Mesoscale phenomena ; Mesoscale processes ; Ocean circulation ; Ocean dynamics ; Ocean temperature ; Ocean warming ; Oceanic general circulation model ; Oceans ; Physics ; Regions ; Sea level ; Sea level changes ; Sea level rise ; Upper ocean ; Uptake ; Upwelling</subject><ispartof>Journal of climate, 2021-03, Vol.34 (6), p.2017-2035</ispartof><rights>2021 American Meteorological Society</rights><rights>Copyright American Meteorological Society Mar 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-c24365c654881ca6088d99f92ab3965a7061d8f080d326e9c96d17479ab95e343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27076196$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27076196$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Saenko, Oleg A.</creatorcontrib><creatorcontrib>Gregory, Jonathan M.</creatorcontrib><creatorcontrib>Griffies, Stephen M.</creatorcontrib><creatorcontrib>Couldrey, Matthew P.</creatorcontrib><creatorcontrib>Dias, Fabio Boeira</creatorcontrib><title>Contribution of Ocean Physics and Dynamics at Different Scales to Heat Uptake in Low-Resolution AOGCMs</title><title>Journal of climate</title><description>Using an ensemble of atmosphere–ocean general circulation models (AOGCMs) in an idealized climate change experiment, this study quantifies the contributions to ocean heat uptake (OHU) from ocean physical parameterizations and resolved dynamical processes operating at different scales. Analysis of heat budget diagnostics reveals a leading-order global heat balance in the subsurface upper ocean in a steady state between the large-scale circulation warming it and mesoscale processes cooling it, and shows that there are positive contributions from processes on all scales to the subsurface OHU during climate change. There is better agreement among the AOGCMs in the net OHU than in the individual scales/processes contributing to it. In the upper ocean and at high latitudes, OHU is dominated by small-scale diapycnal processes. Below 400 m, OHU is dominated by the superresidual transport, representing large-scale ocean dynamics combined with all parameterized mesoscale and submesoscale eddy effects. Weakening of the AMOC leads to less heat convergence in the subpolar North Atlantic and less heat divergence at lower latitudes, with a small overall effect on the net Atlantic heat content. At low latitudes, the dominance of advective heat redistribution is contrary to the diffusive OHU mechanism assumed by the commonly used upwelling-diffusion model. Using a density water-mass framework, it is found that most of the OHU occurs along isopycnal directions. This feature of OHU is used to accurately reconstruct the global vertical ocean warming profile from the surface heat flux anomalies, supporting advective (rather than diffusive) models of OHU and sea level rise.</description><subject>Anomalies</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Dynamics</subject><subject>Enthalpy</subject><subject>General circulation models</subject><subject>Heat balance</subject><subject>Heat budget</subject><subject>Heat content</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Induction heating</subject><subject>Latitude</subject><subject>Mesoscale phenomena</subject><subject>Mesoscale processes</subject><subject>Ocean circulation</subject><subject>Ocean dynamics</subject><subject>Ocean temperature</subject><subject>Ocean warming</subject><subject>Oceanic general circulation model</subject><subject>Oceans</subject><subject>Physics</subject><subject>Regions</subject><subject>Sea level</subject><subject>Sea level changes</subject><subject>Sea level rise</subject><subject>Upper ocean</subject><subject>Uptake</subject><subject>Upwelling</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kM9LwzAcxYMoOKd3L0LAc2d-NElzlE63SWWi7hyyNMHOrZlJhuy_t7Xi6cvj-3nvwQPgGqMJxoLdPZXVIptmBGWIMzLBJ2CEWa_ynJyCESpknhWCsXNwEeMGIUw4QiPgSt-m0KwPqfEt9A4ujdUtfPk4xsZEqNsaTo-t3v2KBKeNczbYNsE3o7c2wuTh3HaP1T7pTwubFlb-O3u10W-HyPvlrHyOl-DM6W20V393DFaPD-_lPKuWs0V5X2WGUpYyQ3LKmeEsLwpsNEdFUUvpJNFrKjnTAnFcFw4VqKaEW2kkr7HIhdRrySzN6RjcDrn74L8ONia18YfQdpWKMIwpo1zQjkIDZYKPMVin9qHZ6XBUGKl-TdWvqaaKINWvqXBnuRksm5h8-OeJQIJjyekPa5Fv5w</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Saenko, Oleg A.</creator><creator>Gregory, Jonathan M.</creator><creator>Griffies, Stephen M.</creator><creator>Couldrey, Matthew P.</creator><creator>Dias, Fabio Boeira</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20210301</creationdate><title>Contribution of Ocean Physics and Dynamics at Different Scales to Heat Uptake in Low-Resolution AOGCMs</title><author>Saenko, Oleg A. ; Gregory, Jonathan M. ; Griffies, Stephen M. ; Couldrey, Matthew P. ; Dias, Fabio Boeira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-c24365c654881ca6088d99f92ab3965a7061d8f080d326e9c96d17479ab95e343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anomalies</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Dynamics</topic><topic>Enthalpy</topic><topic>General circulation models</topic><topic>Heat balance</topic><topic>Heat budget</topic><topic>Heat content</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Induction heating</topic><topic>Latitude</topic><topic>Mesoscale phenomena</topic><topic>Mesoscale processes</topic><topic>Ocean circulation</topic><topic>Ocean dynamics</topic><topic>Ocean temperature</topic><topic>Ocean warming</topic><topic>Oceanic general circulation model</topic><topic>Oceans</topic><topic>Physics</topic><topic>Regions</topic><topic>Sea level</topic><topic>Sea level changes</topic><topic>Sea level rise</topic><topic>Upper ocean</topic><topic>Uptake</topic><topic>Upwelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saenko, Oleg A.</creatorcontrib><creatorcontrib>Gregory, Jonathan M.</creatorcontrib><creatorcontrib>Griffies, Stephen M.</creatorcontrib><creatorcontrib>Couldrey, Matthew P.</creatorcontrib><creatorcontrib>Dias, Fabio Boeira</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saenko, Oleg A.</au><au>Gregory, Jonathan M.</au><au>Griffies, Stephen M.</au><au>Couldrey, Matthew P.</au><au>Dias, Fabio Boeira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of Ocean Physics and Dynamics at Different Scales to Heat Uptake in Low-Resolution AOGCMs</atitle><jtitle>Journal of climate</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>34</volume><issue>6</issue><spage>2017</spage><epage>2035</epage><pages>2017-2035</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Using an ensemble of atmosphere–ocean general circulation models (AOGCMs) in an idealized climate change experiment, this study quantifies the contributions to ocean heat uptake (OHU) from ocean physical parameterizations and resolved dynamical processes operating at different scales. Analysis of heat budget diagnostics reveals a leading-order global heat balance in the subsurface upper ocean in a steady state between the large-scale circulation warming it and mesoscale processes cooling it, and shows that there are positive contributions from processes on all scales to the subsurface OHU during climate change. There is better agreement among the AOGCMs in the net OHU than in the individual scales/processes contributing to it. In the upper ocean and at high latitudes, OHU is dominated by small-scale diapycnal processes. Below 400 m, OHU is dominated by the superresidual transport, representing large-scale ocean dynamics combined with all parameterized mesoscale and submesoscale eddy effects. Weakening of the AMOC leads to less heat convergence in the subpolar North Atlantic and less heat divergence at lower latitudes, with a small overall effect on the net Atlantic heat content. At low latitudes, the dominance of advective heat redistribution is contrary to the diffusive OHU mechanism assumed by the commonly used upwelling-diffusion model. Using a density water-mass framework, it is found that most of the OHU occurs along isopycnal directions. This feature of OHU is used to accurately reconstruct the global vertical ocean warming profile from the surface heat flux anomalies, supporting advective (rather than diffusive) models of OHU and sea level rise.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-20-0652.1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2021-03, Vol.34 (6), p.2017-2035 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_2511353673 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Anomalies Atmospheric circulation Atmospheric models Climate change Climate models Dynamics Enthalpy General circulation models Heat balance Heat budget Heat content Heat flux Heat transfer Induction heating Latitude Mesoscale phenomena Mesoscale processes Ocean circulation Ocean dynamics Ocean temperature Ocean warming Oceanic general circulation model Oceans Physics Regions Sea level Sea level changes Sea level rise Upper ocean Uptake Upwelling |
title | Contribution of Ocean Physics and Dynamics at Different Scales to Heat Uptake in Low-Resolution AOGCMs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20Ocean%20Physics%20and%20Dynamics%20at%20Different%20Scales%20to%20Heat%20Uptake%20in%20Low-Resolution%20AOGCMs&rft.jtitle=Journal%20of%20climate&rft.au=Saenko,%20Oleg%20A.&rft.date=2021-03-01&rft.volume=34&rft.issue=6&rft.spage=2017&rft.epage=2035&rft.pages=2017-2035&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-20-0652.1&rft_dat=%3Cjstor_proqu%3E27076196%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511353673&rft_id=info:pmid/&rft_jstor_id=27076196&rfr_iscdi=true |