Lightning Data Assimilation Scheme in a 4DVAR System and Its Impact on Very Short-Term Convective Forecasting
A proof-of-concept method for the assimilation of total lightning observations in the 4DVAR framework is proposed and implemented into the Variational Doppler Radar Analysis System (VDRAS). Its performance is evaluated for the very short-term precipitation forecasts of a localized convective event o...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2021-02, Vol.149 (2), p.353-373 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 373 |
---|---|
container_issue | 2 |
container_start_page | 353 |
container_title | Monthly weather review |
container_volume | 149 |
creator | Xiao, Xian Sun, Juanzhen Qie, Xiushu Ying, Zhuming Ji, Lei Chen, Mingxuan Zhang, Lina |
description | A proof-of-concept method for the assimilation of total lightning observations in the 4DVAR framework is proposed and implemented into the Variational Doppler Radar Analysis System (VDRAS). Its performance is evaluated for the very short-term precipitation forecasts of a localized convective event over northeastern China. The lightning DA scheme assimilated pseudo-observations for vertical velocity fields derived from observed total lightning rates and statistically computed vertical velocity profile from VDRAS analysis data. To reduce representative errors of the derived vertical velocity, a distance-weighted horizontal interpolation is applied to the input data prior to the DA. The case study reveals that although 0–2-h precipitation nowcasts are improved by assimilating lightning data alone compared to CTRL (no radar or lightning) and RAD (radar only), better results are obtained when the lightning data are assimilated with radar data simultaneously. The assimilation of both data sources results in improved dynamical consistency with enhanced updraft and latent heat as well as improved moisture distributions. Additional experiments are conducted to evaluate the sensitivity of the combined DA scheme to varied vertical velocity profiles, radii of horizontal interpolation, binning time intervals, and relationships used to estimate the maximum vertical velocity from lightning flash rates. It is shown that the scheme is robust to these variations with both radar and lightning assimilated data. |
doi_str_mv | 10.1175/MWR-D-19-0396.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511231145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511231145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-6dbf91e65073281c97ca5f674c510f48a7f2419dfc9a3bb5a279e2e9162d9b2d3</originalsourceid><addsrcrecordid>eNotkEtrAjEYRUNpodZ23W2g62i-vMYsRfsQLAW1dhkymYyOODM2iYL_viN2dTeHe-Ag9Ax0AJDJ4efPgkwJaEK5VgO4QT2QjBIqNL9FPUpZRqgS4h49xLijlColWA_V82qzTU3VbPDUJovHMVZ1tbepahu8dFtfe1w12GIxXY8XeHmOydfYNgWepYhn9cG6hDt07cMZL7dtSGTlQ40nbXPyLlUnj9_a4J2NqXM8orvS7qN_-t8--n57XU0-yPzrfTYZz4njQBNRRV5q8ErSjLMROJ05K0uVCSeBlmJks5IJ0EXptOV5Li3LtGdeg2KFzlnB--jl-nsI7e_Rx2R27TE0ndIwCcA4gJAdNbxSLrQxBl-aQ6hqG84GqLk0NV1TMzWgzaWpAf4HzJxpcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511231145</pqid></control><display><type>article</type><title>Lightning Data Assimilation Scheme in a 4DVAR System and Its Impact on Very Short-Term Convective Forecasting</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Xiao, Xian ; Sun, Juanzhen ; Qie, Xiushu ; Ying, Zhuming ; Ji, Lei ; Chen, Mingxuan ; Zhang, Lina</creator><creatorcontrib>Xiao, Xian ; Sun, Juanzhen ; Qie, Xiushu ; Ying, Zhuming ; Ji, Lei ; Chen, Mingxuan ; Zhang, Lina</creatorcontrib><description>A proof-of-concept method for the assimilation of total lightning observations in the 4DVAR framework is proposed and implemented into the Variational Doppler Radar Analysis System (VDRAS). Its performance is evaluated for the very short-term precipitation forecasts of a localized convective event over northeastern China. The lightning DA scheme assimilated pseudo-observations for vertical velocity fields derived from observed total lightning rates and statistically computed vertical velocity profile from VDRAS analysis data. To reduce representative errors of the derived vertical velocity, a distance-weighted horizontal interpolation is applied to the input data prior to the DA. The case study reveals that although 0–2-h precipitation nowcasts are improved by assimilating lightning data alone compared to CTRL (no radar or lightning) and RAD (radar only), better results are obtained when the lightning data are assimilated with radar data simultaneously. The assimilation of both data sources results in improved dynamical consistency with enhanced updraft and latent heat as well as improved moisture distributions. Additional experiments are conducted to evaluate the sensitivity of the combined DA scheme to varied vertical velocity profiles, radii of horizontal interpolation, binning time intervals, and relationships used to estimate the maximum vertical velocity from lightning flash rates. It is shown that the scheme is robust to these variations with both radar and lightning assimilated data.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-19-0396.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Data ; Data assimilation ; Data collection ; Doppler radar ; Doppler sonar ; Interpolation ; Latent heat ; Lightning ; Lightning flashes ; Performance evaluation ; Precipitation ; Precipitation forecasting ; Radar ; Radar data ; Sensitivity analysis ; Updraft ; Velocity ; Velocity distribution ; Velocity profiles ; Vertical velocities ; Weather forecasting</subject><ispartof>Monthly weather review, 2021-02, Vol.149 (2), p.353-373</ispartof><rights>Copyright American Meteorological Society Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-6dbf91e65073281c97ca5f674c510f48a7f2419dfc9a3bb5a279e2e9162d9b2d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3679,27923,27924</link.rule.ids></links><search><creatorcontrib>Xiao, Xian</creatorcontrib><creatorcontrib>Sun, Juanzhen</creatorcontrib><creatorcontrib>Qie, Xiushu</creatorcontrib><creatorcontrib>Ying, Zhuming</creatorcontrib><creatorcontrib>Ji, Lei</creatorcontrib><creatorcontrib>Chen, Mingxuan</creatorcontrib><creatorcontrib>Zhang, Lina</creatorcontrib><title>Lightning Data Assimilation Scheme in a 4DVAR System and Its Impact on Very Short-Term Convective Forecasting</title><title>Monthly weather review</title><description>A proof-of-concept method for the assimilation of total lightning observations in the 4DVAR framework is proposed and implemented into the Variational Doppler Radar Analysis System (VDRAS). Its performance is evaluated for the very short-term precipitation forecasts of a localized convective event over northeastern China. The lightning DA scheme assimilated pseudo-observations for vertical velocity fields derived from observed total lightning rates and statistically computed vertical velocity profile from VDRAS analysis data. To reduce representative errors of the derived vertical velocity, a distance-weighted horizontal interpolation is applied to the input data prior to the DA. The case study reveals that although 0–2-h precipitation nowcasts are improved by assimilating lightning data alone compared to CTRL (no radar or lightning) and RAD (radar only), better results are obtained when the lightning data are assimilated with radar data simultaneously. The assimilation of both data sources results in improved dynamical consistency with enhanced updraft and latent heat as well as improved moisture distributions. Additional experiments are conducted to evaluate the sensitivity of the combined DA scheme to varied vertical velocity profiles, radii of horizontal interpolation, binning time intervals, and relationships used to estimate the maximum vertical velocity from lightning flash rates. It is shown that the scheme is robust to these variations with both radar and lightning assimilated data.</description><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Doppler radar</subject><subject>Doppler sonar</subject><subject>Interpolation</subject><subject>Latent heat</subject><subject>Lightning</subject><subject>Lightning flashes</subject><subject>Performance evaluation</subject><subject>Precipitation</subject><subject>Precipitation forecasting</subject><subject>Radar</subject><subject>Radar data</subject><subject>Sensitivity analysis</subject><subject>Updraft</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity profiles</subject><subject>Vertical velocities</subject><subject>Weather forecasting</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkEtrAjEYRUNpodZ23W2g62i-vMYsRfsQLAW1dhkymYyOODM2iYL_viN2dTeHe-Ag9Ax0AJDJ4efPgkwJaEK5VgO4QT2QjBIqNL9FPUpZRqgS4h49xLijlColWA_V82qzTU3VbPDUJovHMVZ1tbepahu8dFtfe1w12GIxXY8XeHmOydfYNgWepYhn9cG6hDt07cMZL7dtSGTlQ40nbXPyLlUnj9_a4J2NqXM8orvS7qN_-t8--n57XU0-yPzrfTYZz4njQBNRRV5q8ErSjLMROJ05K0uVCSeBlmJks5IJ0EXptOV5Li3LtGdeg2KFzlnB--jl-nsI7e_Rx2R27TE0ndIwCcA4gJAdNbxSLrQxBl-aQ6hqG84GqLk0NV1TMzWgzaWpAf4HzJxpcw</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Xiao, Xian</creator><creator>Sun, Juanzhen</creator><creator>Qie, Xiushu</creator><creator>Ying, Zhuming</creator><creator>Ji, Lei</creator><creator>Chen, Mingxuan</creator><creator>Zhang, Lina</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>202102</creationdate><title>Lightning Data Assimilation Scheme in a 4DVAR System and Its Impact on Very Short-Term Convective Forecasting</title><author>Xiao, Xian ; Sun, Juanzhen ; Qie, Xiushu ; Ying, Zhuming ; Ji, Lei ; Chen, Mingxuan ; Zhang, Lina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-6dbf91e65073281c97ca5f674c510f48a7f2419dfc9a3bb5a279e2e9162d9b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Doppler radar</topic><topic>Doppler sonar</topic><topic>Interpolation</topic><topic>Latent heat</topic><topic>Lightning</topic><topic>Lightning flashes</topic><topic>Performance evaluation</topic><topic>Precipitation</topic><topic>Precipitation forecasting</topic><topic>Radar</topic><topic>Radar data</topic><topic>Sensitivity analysis</topic><topic>Updraft</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity profiles</topic><topic>Vertical velocities</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Xian</creatorcontrib><creatorcontrib>Sun, Juanzhen</creatorcontrib><creatorcontrib>Qie, Xiushu</creatorcontrib><creatorcontrib>Ying, Zhuming</creatorcontrib><creatorcontrib>Ji, Lei</creatorcontrib><creatorcontrib>Chen, Mingxuan</creatorcontrib><creatorcontrib>Zhang, Lina</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Xian</au><au>Sun, Juanzhen</au><au>Qie, Xiushu</au><au>Ying, Zhuming</au><au>Ji, Lei</au><au>Chen, Mingxuan</au><au>Zhang, Lina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightning Data Assimilation Scheme in a 4DVAR System and Its Impact on Very Short-Term Convective Forecasting</atitle><jtitle>Monthly weather review</jtitle><date>2021-02</date><risdate>2021</risdate><volume>149</volume><issue>2</issue><spage>353</spage><epage>373</epage><pages>353-373</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>A proof-of-concept method for the assimilation of total lightning observations in the 4DVAR framework is proposed and implemented into the Variational Doppler Radar Analysis System (VDRAS). Its performance is evaluated for the very short-term precipitation forecasts of a localized convective event over northeastern China. The lightning DA scheme assimilated pseudo-observations for vertical velocity fields derived from observed total lightning rates and statistically computed vertical velocity profile from VDRAS analysis data. To reduce representative errors of the derived vertical velocity, a distance-weighted horizontal interpolation is applied to the input data prior to the DA. The case study reveals that although 0–2-h precipitation nowcasts are improved by assimilating lightning data alone compared to CTRL (no radar or lightning) and RAD (radar only), better results are obtained when the lightning data are assimilated with radar data simultaneously. The assimilation of both data sources results in improved dynamical consistency with enhanced updraft and latent heat as well as improved moisture distributions. Additional experiments are conducted to evaluate the sensitivity of the combined DA scheme to varied vertical velocity profiles, radii of horizontal interpolation, binning time intervals, and relationships used to estimate the maximum vertical velocity from lightning flash rates. It is shown that the scheme is robust to these variations with both radar and lightning assimilated data.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-19-0396.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2021-02, Vol.149 (2), p.353-373 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_proquest_journals_2511231145 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Data Data assimilation Data collection Doppler radar Doppler sonar Interpolation Latent heat Lightning Lightning flashes Performance evaluation Precipitation Precipitation forecasting Radar Radar data Sensitivity analysis Updraft Velocity Velocity distribution Velocity profiles Vertical velocities Weather forecasting |
title | Lightning Data Assimilation Scheme in a 4DVAR System and Its Impact on Very Short-Term Convective Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightning%20Data%20Assimilation%20Scheme%20in%20a%204DVAR%20System%20and%20Its%20Impact%20on%20Very%20Short-Term%20Convective%20Forecasting&rft.jtitle=Monthly%20weather%20review&rft.au=Xiao,%20Xian&rft.date=2021-02&rft.volume=149&rft.issue=2&rft.spage=353&rft.epage=373&rft.pages=353-373&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-19-0396.1&rft_dat=%3Cproquest_cross%3E2511231145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511231145&rft_id=info:pmid/&rfr_iscdi=true |