Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus
We present the outcome of a mission concept study that designed a small atmospheric entry probe and examined the feasibility and benefit of a future multi-probe mission to Uranus. We call our design the Small Next-generation Atmospheric Probe (SNAP). The primary scientific objective of a multi-probe...
Gespeichert in:
Veröffentlicht in: | Space science reviews 2020-06, Vol.216 (4), Article 72 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Space science reviews |
container_volume | 216 |
creator | Sayanagi, K. M. Dillman, R. A. Atkinson, D. H. Li, J. Saikia, S. Simon, A. A. Spilker, T. R. Wong, M. H. Edwards, W. C. Hope, D. Arora, A. Bowen, S. C. Bowes, A. Brady, J. S. Clark, T. O. Fairbairn, R. E. Goggin, D. G. Grondin, T. A. Horan, S. J. Infeld, S. I. Leckey, J. P. Longuski, J. M. Marvel, T. E. McCabe, R. M. Parikh, A. M. Peterson, D. J. Primeaux, S. J. Scammell, A. D. Somervill, K. M. Taylor, L. W. Thames, C. Tosoc, H. P. Tran, L. D. |
description | We present the outcome of a mission concept study that designed a small atmospheric entry probe and examined the feasibility and benefit of a future multi-probe mission to Uranus. We call our design the Small Next-generation Atmospheric Probe (SNAP). The primary scientific objective of a multi-probe mission is to reveal spatial variability of atmospheric conditions. This article first highlights that not all measurements must be repeated by multiple probes; some quantities, notably the noble gas abundances and elemental isotopic ratios, are not expected to be variable, and thus need to be performed only by a single large Primary Probe. Our study demonstrates that, by focusing its measurements on spatially variable quantities including atmospheric vapor concentrations, thermal stratification and wind speed, a viable atmospheric probe design is realized with an entry system with 50-cm heatshield diameter and 30-kg atmospheric entry mass.
As a case study, we present a detailed analysis of adding SNAP to a notional Uranus Orbiter with Probe mission, which launches in 2031 and arrives at Uranus in 2043, designed by the NASA-funded Science Definition Team study in 2017. We demonstrate that, with minimal changes to the notional carrier mission, a large Primary Probe and SNAP can be delivered to the winter and summer hemispheres to examine seasonal atmospheric variabilities, and transmit data to the Orbiter, which in turn relays the data to Earth. The additional maneuvers needed to deliver SNAP totals a Delta-V of 84 m/s, and consumes 43 kg of propellant. The addition of SNAP is expected to cost $79.5 million in FY2018 dollars; thus, our study demonstrates that a multi-probe mission can be implemented with a 4% cost increase relative to the $2.0 billion cost estimate of the notional mission designed by NASA’s Ice Giant Flagship Science Definition Team study reported in 2017.
The SNAP design incorporates several technologies that are currently under development at various Technology Readiness Levels (TRL) between TRL = 4 and TRL = 6. In particular, our study recommends targeted technology development in Thermal Protection System materials, advanced batteries, and miniaturized instruments to enable and enhance future small atmospheric probes like SNAP. |
doi_str_mv | 10.1007/s11214-020-00686-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510845689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510845689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3fcf82f46444505fb11099496a1283fd276a9e62bb93896baf868419b89b63743</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKdfwFPAix6i-dc08TbGNgU3B3PnkHaJdnTNTFJw397OCt48vZfn-b3wAHBN8D3BOH-IhFDCEaYYYSykQPkJGJAsp0iJnJ6CAcZMIsGwPAcXMW4xPmr5ALSrnalruLBfCc1sY4NJlW_gKO183H_YUJVwGXxh4e1qMVrewbFvSrtPMHk4aUxRWzhtUxssnLd1qlDPzqsYu5X4CEdwbKKFq9RuDtD5ANfBNG28BGfO1NFe_d4hWE8nb-Mn9PI6ex6PXlDJiEqIudJJ6rjgnGc4cwUhWCmuhCFUMrehuTDKCloUikklCuOkkJyoQqpCsJyzIbjpd_fBf7Y2Jr31bWi6l5pmBEueCak6ivZUGXyMwTq9D9XOhIMmWB876T6v7vLqn7w67yTWS7GDm3cb_qb_sb4BVZZ7gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510845689</pqid></control><display><type>article</type><title>Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus</title><source>Springer Nature - Complete Springer Journals</source><creator>Sayanagi, K. M. ; Dillman, R. A. ; Atkinson, D. H. ; Li, J. ; Saikia, S. ; Simon, A. A. ; Spilker, T. R. ; Wong, M. H. ; Edwards, W. C. ; Hope, D. ; Arora, A. ; Bowen, S. C. ; Bowes, A. ; Brady, J. S. ; Clark, T. O. ; Fairbairn, R. E. ; Goggin, D. G. ; Grondin, T. A. ; Horan, S. J. ; Infeld, S. I. ; Leckey, J. P. ; Longuski, J. M. ; Marvel, T. E. ; McCabe, R. M. ; Parikh, A. M. ; Peterson, D. J. ; Primeaux, S. J. ; Scammell, A. D. ; Somervill, K. M. ; Taylor, L. W. ; Thames, C. ; Tosoc, H. P. ; Tran, L. D.</creator><creatorcontrib>Sayanagi, K. M. ; Dillman, R. A. ; Atkinson, D. H. ; Li, J. ; Saikia, S. ; Simon, A. A. ; Spilker, T. R. ; Wong, M. H. ; Edwards, W. C. ; Hope, D. ; Arora, A. ; Bowen, S. C. ; Bowes, A. ; Brady, J. S. ; Clark, T. O. ; Fairbairn, R. E. ; Goggin, D. G. ; Grondin, T. A. ; Horan, S. J. ; Infeld, S. I. ; Leckey, J. P. ; Longuski, J. M. ; Marvel, T. E. ; McCabe, R. M. ; Parikh, A. M. ; Peterson, D. J. ; Primeaux, S. J. ; Scammell, A. D. ; Somervill, K. M. ; Taylor, L. W. ; Thames, C. ; Tosoc, H. P. ; Tran, L. D.</creatorcontrib><description>We present the outcome of a mission concept study that designed a small atmospheric entry probe and examined the feasibility and benefit of a future multi-probe mission to Uranus. We call our design the Small Next-generation Atmospheric Probe (SNAP). The primary scientific objective of a multi-probe mission is to reveal spatial variability of atmospheric conditions. This article first highlights that not all measurements must be repeated by multiple probes; some quantities, notably the noble gas abundances and elemental isotopic ratios, are not expected to be variable, and thus need to be performed only by a single large Primary Probe. Our study demonstrates that, by focusing its measurements on spatially variable quantities including atmospheric vapor concentrations, thermal stratification and wind speed, a viable atmospheric probe design is realized with an entry system with 50-cm heatshield diameter and 30-kg atmospheric entry mass.
As a case study, we present a detailed analysis of adding SNAP to a notional Uranus Orbiter with Probe mission, which launches in 2031 and arrives at Uranus in 2043, designed by the NASA-funded Science Definition Team study in 2017. We demonstrate that, with minimal changes to the notional carrier mission, a large Primary Probe and SNAP can be delivered to the winter and summer hemispheres to examine seasonal atmospheric variabilities, and transmit data to the Orbiter, which in turn relays the data to Earth. The additional maneuvers needed to deliver SNAP totals a Delta-V of 84 m/s, and consumes 43 kg of propellant. The addition of SNAP is expected to cost $79.5 million in FY2018 dollars; thus, our study demonstrates that a multi-probe mission can be implemented with a 4% cost increase relative to the $2.0 billion cost estimate of the notional mission designed by NASA’s Ice Giant Flagship Science Definition Team study reported in 2017.
The SNAP design incorporates several technologies that are currently under development at various Technology Readiness Levels (TRL) between TRL = 4 and TRL = 6. In particular, our study recommends targeted technology development in Thermal Protection System materials, advanced batteries, and miniaturized instruments to enable and enhance future small atmospheric probes like SNAP.</description><identifier>ISSN: 0038-6308</identifier><identifier>EISSN: 1572-9672</identifier><identifier>DOI: 10.1007/s11214-020-00686-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astrophysics and Astroparticles ; Atmospheric entry ; Case studies ; Cost estimates ; Design ; Diameters ; Hemispheres ; Ice giant planets ; In Situ Exploration of the Ice Giants: Science and Technology ; Maneuvers ; Physics ; Physics and Astronomy ; Planetary probes ; Planetology ; Probes ; Rare gases ; Seasonal variability ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Spatial variability ; Technology assessment ; Thermal protection ; Thermal stratification ; Uranus ; Wind speed</subject><ispartof>Space science reviews, 2020-06, Vol.216 (4), Article 72</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3fcf82f46444505fb11099496a1283fd276a9e62bb93896baf868419b89b63743</citedby><cites>FETCH-LOGICAL-c319t-3fcf82f46444505fb11099496a1283fd276a9e62bb93896baf868419b89b63743</cites><orcidid>0000-0001-8729-0992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11214-020-00686-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11214-020-00686-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sayanagi, K. M.</creatorcontrib><creatorcontrib>Dillman, R. A.</creatorcontrib><creatorcontrib>Atkinson, D. H.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Saikia, S.</creatorcontrib><creatorcontrib>Simon, A. A.</creatorcontrib><creatorcontrib>Spilker, T. R.</creatorcontrib><creatorcontrib>Wong, M. H.</creatorcontrib><creatorcontrib>Edwards, W. C.</creatorcontrib><creatorcontrib>Hope, D.</creatorcontrib><creatorcontrib>Arora, A.</creatorcontrib><creatorcontrib>Bowen, S. C.</creatorcontrib><creatorcontrib>Bowes, A.</creatorcontrib><creatorcontrib>Brady, J. S.</creatorcontrib><creatorcontrib>Clark, T. O.</creatorcontrib><creatorcontrib>Fairbairn, R. E.</creatorcontrib><creatorcontrib>Goggin, D. G.</creatorcontrib><creatorcontrib>Grondin, T. A.</creatorcontrib><creatorcontrib>Horan, S. J.</creatorcontrib><creatorcontrib>Infeld, S. I.</creatorcontrib><creatorcontrib>Leckey, J. P.</creatorcontrib><creatorcontrib>Longuski, J. M.</creatorcontrib><creatorcontrib>Marvel, T. E.</creatorcontrib><creatorcontrib>McCabe, R. M.</creatorcontrib><creatorcontrib>Parikh, A. M.</creatorcontrib><creatorcontrib>Peterson, D. J.</creatorcontrib><creatorcontrib>Primeaux, S. J.</creatorcontrib><creatorcontrib>Scammell, A. D.</creatorcontrib><creatorcontrib>Somervill, K. M.</creatorcontrib><creatorcontrib>Taylor, L. W.</creatorcontrib><creatorcontrib>Thames, C.</creatorcontrib><creatorcontrib>Tosoc, H. P.</creatorcontrib><creatorcontrib>Tran, L. D.</creatorcontrib><title>Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus</title><title>Space science reviews</title><addtitle>Space Sci Rev</addtitle><description>We present the outcome of a mission concept study that designed a small atmospheric entry probe and examined the feasibility and benefit of a future multi-probe mission to Uranus. We call our design the Small Next-generation Atmospheric Probe (SNAP). The primary scientific objective of a multi-probe mission is to reveal spatial variability of atmospheric conditions. This article first highlights that not all measurements must be repeated by multiple probes; some quantities, notably the noble gas abundances and elemental isotopic ratios, are not expected to be variable, and thus need to be performed only by a single large Primary Probe. Our study demonstrates that, by focusing its measurements on spatially variable quantities including atmospheric vapor concentrations, thermal stratification and wind speed, a viable atmospheric probe design is realized with an entry system with 50-cm heatshield diameter and 30-kg atmospheric entry mass.
As a case study, we present a detailed analysis of adding SNAP to a notional Uranus Orbiter with Probe mission, which launches in 2031 and arrives at Uranus in 2043, designed by the NASA-funded Science Definition Team study in 2017. We demonstrate that, with minimal changes to the notional carrier mission, a large Primary Probe and SNAP can be delivered to the winter and summer hemispheres to examine seasonal atmospheric variabilities, and transmit data to the Orbiter, which in turn relays the data to Earth. The additional maneuvers needed to deliver SNAP totals a Delta-V of 84 m/s, and consumes 43 kg of propellant. The addition of SNAP is expected to cost $79.5 million in FY2018 dollars; thus, our study demonstrates that a multi-probe mission can be implemented with a 4% cost increase relative to the $2.0 billion cost estimate of the notional mission designed by NASA’s Ice Giant Flagship Science Definition Team study reported in 2017.
The SNAP design incorporates several technologies that are currently under development at various Technology Readiness Levels (TRL) between TRL = 4 and TRL = 6. In particular, our study recommends targeted technology development in Thermal Protection System materials, advanced batteries, and miniaturized instruments to enable and enhance future small atmospheric probes like SNAP.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric entry</subject><subject>Case studies</subject><subject>Cost estimates</subject><subject>Design</subject><subject>Diameters</subject><subject>Hemispheres</subject><subject>Ice giant planets</subject><subject>In Situ Exploration of the Ice Giants: Science and Technology</subject><subject>Maneuvers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planetary probes</subject><subject>Planetology</subject><subject>Probes</subject><subject>Rare gases</subject><subject>Seasonal variability</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Spatial variability</subject><subject>Technology assessment</subject><subject>Thermal protection</subject><subject>Thermal stratification</subject><subject>Uranus</subject><subject>Wind speed</subject><issn>0038-6308</issn><issn>1572-9672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LwzAYh4MoOKdfwFPAix6i-dc08TbGNgU3B3PnkHaJdnTNTFJw397OCt48vZfn-b3wAHBN8D3BOH-IhFDCEaYYYSykQPkJGJAsp0iJnJ6CAcZMIsGwPAcXMW4xPmr5ALSrnalruLBfCc1sY4NJlW_gKO183H_YUJVwGXxh4e1qMVrewbFvSrtPMHk4aUxRWzhtUxssnLd1qlDPzqsYu5X4CEdwbKKFq9RuDtD5ANfBNG28BGfO1NFe_d4hWE8nb-Mn9PI6ex6PXlDJiEqIudJJ6rjgnGc4cwUhWCmuhCFUMrehuTDKCloUikklCuOkkJyoQqpCsJyzIbjpd_fBf7Y2Jr31bWi6l5pmBEueCak6ivZUGXyMwTq9D9XOhIMmWB876T6v7vLqn7w67yTWS7GDm3cb_qb_sb4BVZZ7gw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Sayanagi, K. M.</creator><creator>Dillman, R. A.</creator><creator>Atkinson, D. H.</creator><creator>Li, J.</creator><creator>Saikia, S.</creator><creator>Simon, A. A.</creator><creator>Spilker, T. R.</creator><creator>Wong, M. H.</creator><creator>Edwards, W. C.</creator><creator>Hope, D.</creator><creator>Arora, A.</creator><creator>Bowen, S. C.</creator><creator>Bowes, A.</creator><creator>Brady, J. S.</creator><creator>Clark, T. O.</creator><creator>Fairbairn, R. E.</creator><creator>Goggin, D. G.</creator><creator>Grondin, T. A.</creator><creator>Horan, S. J.</creator><creator>Infeld, S. I.</creator><creator>Leckey, J. P.</creator><creator>Longuski, J. M.</creator><creator>Marvel, T. E.</creator><creator>McCabe, R. M.</creator><creator>Parikh, A. M.</creator><creator>Peterson, D. J.</creator><creator>Primeaux, S. J.</creator><creator>Scammell, A. D.</creator><creator>Somervill, K. M.</creator><creator>Taylor, L. W.</creator><creator>Thames, C.</creator><creator>Tosoc, H. P.</creator><creator>Tran, L. D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8729-0992</orcidid></search><sort><creationdate>20200601</creationdate><title>Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus</title><author>Sayanagi, K. M. ; Dillman, R. A. ; Atkinson, D. H. ; Li, J. ; Saikia, S. ; Simon, A. A. ; Spilker, T. R. ; Wong, M. H. ; Edwards, W. C. ; Hope, D. ; Arora, A. ; Bowen, S. C. ; Bowes, A. ; Brady, J. S. ; Clark, T. O. ; Fairbairn, R. E. ; Goggin, D. G. ; Grondin, T. A. ; Horan, S. J. ; Infeld, S. I. ; Leckey, J. P. ; Longuski, J. M. ; Marvel, T. E. ; McCabe, R. M. ; Parikh, A. M. ; Peterson, D. J. ; Primeaux, S. J. ; Scammell, A. D. ; Somervill, K. M. ; Taylor, L. W. ; Thames, C. ; Tosoc, H. P. ; Tran, L. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3fcf82f46444505fb11099496a1283fd276a9e62bb93896baf868419b89b63743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric entry</topic><topic>Case studies</topic><topic>Cost estimates</topic><topic>Design</topic><topic>Diameters</topic><topic>Hemispheres</topic><topic>Ice giant planets</topic><topic>In Situ Exploration of the Ice Giants: Science and Technology</topic><topic>Maneuvers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planetary probes</topic><topic>Planetology</topic><topic>Probes</topic><topic>Rare gases</topic><topic>Seasonal variability</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Spatial variability</topic><topic>Technology assessment</topic><topic>Thermal protection</topic><topic>Thermal stratification</topic><topic>Uranus</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayanagi, K. M.</creatorcontrib><creatorcontrib>Dillman, R. A.</creatorcontrib><creatorcontrib>Atkinson, D. H.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Saikia, S.</creatorcontrib><creatorcontrib>Simon, A. A.</creatorcontrib><creatorcontrib>Spilker, T. R.</creatorcontrib><creatorcontrib>Wong, M. H.</creatorcontrib><creatorcontrib>Edwards, W. C.</creatorcontrib><creatorcontrib>Hope, D.</creatorcontrib><creatorcontrib>Arora, A.</creatorcontrib><creatorcontrib>Bowen, S. C.</creatorcontrib><creatorcontrib>Bowes, A.</creatorcontrib><creatorcontrib>Brady, J. S.</creatorcontrib><creatorcontrib>Clark, T. O.</creatorcontrib><creatorcontrib>Fairbairn, R. E.</creatorcontrib><creatorcontrib>Goggin, D. G.</creatorcontrib><creatorcontrib>Grondin, T. A.</creatorcontrib><creatorcontrib>Horan, S. J.</creatorcontrib><creatorcontrib>Infeld, S. I.</creatorcontrib><creatorcontrib>Leckey, J. P.</creatorcontrib><creatorcontrib>Longuski, J. M.</creatorcontrib><creatorcontrib>Marvel, T. E.</creatorcontrib><creatorcontrib>McCabe, R. M.</creatorcontrib><creatorcontrib>Parikh, A. M.</creatorcontrib><creatorcontrib>Peterson, D. J.</creatorcontrib><creatorcontrib>Primeaux, S. J.</creatorcontrib><creatorcontrib>Scammell, A. D.</creatorcontrib><creatorcontrib>Somervill, K. M.</creatorcontrib><creatorcontrib>Taylor, L. W.</creatorcontrib><creatorcontrib>Thames, C.</creatorcontrib><creatorcontrib>Tosoc, H. P.</creatorcontrib><creatorcontrib>Tran, L. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Space science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayanagi, K. M.</au><au>Dillman, R. A.</au><au>Atkinson, D. H.</au><au>Li, J.</au><au>Saikia, S.</au><au>Simon, A. A.</au><au>Spilker, T. R.</au><au>Wong, M. H.</au><au>Edwards, W. C.</au><au>Hope, D.</au><au>Arora, A.</au><au>Bowen, S. C.</au><au>Bowes, A.</au><au>Brady, J. S.</au><au>Clark, T. O.</au><au>Fairbairn, R. E.</au><au>Goggin, D. G.</au><au>Grondin, T. A.</au><au>Horan, S. J.</au><au>Infeld, S. I.</au><au>Leckey, J. P.</au><au>Longuski, J. M.</au><au>Marvel, T. E.</au><au>McCabe, R. M.</au><au>Parikh, A. M.</au><au>Peterson, D. J.</au><au>Primeaux, S. J.</au><au>Scammell, A. D.</au><au>Somervill, K. M.</au><au>Taylor, L. W.</au><au>Thames, C.</au><au>Tosoc, H. P.</au><au>Tran, L. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus</atitle><jtitle>Space science reviews</jtitle><stitle>Space Sci Rev</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>216</volume><issue>4</issue><artnum>72</artnum><issn>0038-6308</issn><eissn>1572-9672</eissn><abstract>We present the outcome of a mission concept study that designed a small atmospheric entry probe and examined the feasibility and benefit of a future multi-probe mission to Uranus. We call our design the Small Next-generation Atmospheric Probe (SNAP). The primary scientific objective of a multi-probe mission is to reveal spatial variability of atmospheric conditions. This article first highlights that not all measurements must be repeated by multiple probes; some quantities, notably the noble gas abundances and elemental isotopic ratios, are not expected to be variable, and thus need to be performed only by a single large Primary Probe. Our study demonstrates that, by focusing its measurements on spatially variable quantities including atmospheric vapor concentrations, thermal stratification and wind speed, a viable atmospheric probe design is realized with an entry system with 50-cm heatshield diameter and 30-kg atmospheric entry mass.
As a case study, we present a detailed analysis of adding SNAP to a notional Uranus Orbiter with Probe mission, which launches in 2031 and arrives at Uranus in 2043, designed by the NASA-funded Science Definition Team study in 2017. We demonstrate that, with minimal changes to the notional carrier mission, a large Primary Probe and SNAP can be delivered to the winter and summer hemispheres to examine seasonal atmospheric variabilities, and transmit data to the Orbiter, which in turn relays the data to Earth. The additional maneuvers needed to deliver SNAP totals a Delta-V of 84 m/s, and consumes 43 kg of propellant. The addition of SNAP is expected to cost $79.5 million in FY2018 dollars; thus, our study demonstrates that a multi-probe mission can be implemented with a 4% cost increase relative to the $2.0 billion cost estimate of the notional mission designed by NASA’s Ice Giant Flagship Science Definition Team study reported in 2017.
The SNAP design incorporates several technologies that are currently under development at various Technology Readiness Levels (TRL) between TRL = 4 and TRL = 6. In particular, our study recommends targeted technology development in Thermal Protection System materials, advanced batteries, and miniaturized instruments to enable and enhance future small atmospheric probes like SNAP.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11214-020-00686-7</doi><orcidid>https://orcid.org/0000-0001-8729-0992</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-6308 |
ispartof | Space science reviews, 2020-06, Vol.216 (4), Article 72 |
issn | 0038-6308 1572-9672 |
language | eng |
recordid | cdi_proquest_journals_2510845689 |
source | Springer Nature - Complete Springer Journals |
subjects | Aerospace Technology and Astronautics Astrophysics and Astroparticles Atmospheric entry Case studies Cost estimates Design Diameters Hemispheres Ice giant planets In Situ Exploration of the Ice Giants: Science and Technology Maneuvers Physics Physics and Astronomy Planetary probes Planetology Probes Rare gases Seasonal variability Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Spatial variability Technology assessment Thermal protection Thermal stratification Uranus Wind speed |
title | Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Next-Generation%20Atmospheric%20Probe%20(SNAP)%20Concept%20to%20Enable%20Future%20Multi-Probe%20Missions:%20A%20Case%20Study%20for%20Uranus&rft.jtitle=Space%20science%20reviews&rft.au=Sayanagi,%20K.%20M.&rft.date=2020-06-01&rft.volume=216&rft.issue=4&rft.artnum=72&rft.issn=0038-6308&rft.eissn=1572-9672&rft_id=info:doi/10.1007/s11214-020-00686-7&rft_dat=%3Cproquest_cross%3E2510845689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510845689&rft_id=info:pmid/&rfr_iscdi=true |