Sulfur Ice Astrochemistry: A Review of Laboratory Studies

Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space science reviews 2021-02, Vol.217 (1), Article 14
Hauptverfasser: Mifsud, Duncan V., Kaňuchová, Zuzana, Herczku, Péter, Ioppolo, Sergio, Juhász, Zoltán, Kovács, Sándor T. S., Mason, Nigel J., McCullough, Robert W., Sulik, Béla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Space science reviews
container_volume 217
creator Mifsud, Duncan V.
Kaňuchová, Zuzana
Herczku, Péter
Ioppolo, Sergio
Juhász, Zoltán
Kovács, Sándor T. S.
Mason, Nigel J.
McCullough, Robert W.
Sulik, Béla
description Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of research currently being explored is the laboratory processing of astrophysical ice analogues. Such research involves the synthesis of an ice of specific morphology and chemical composition at temperatures and pressures relevant to a selected astrophysical setting (such as the interstellar medium or the surfaces of icy moons). Subsequent processing of the ice under conditions that simulate the selected astrophysical setting commonly involves radiolysis, photolysis, thermal processing, neutral-neutral fragment chemistry, or any combination of these, and has been the subject of several studies. The in-situ changes in ice morphology and chemistry occurring during such processing are often monitored via spectroscopic or spectrometric techniques. In this paper, we have reviewed the results of laboratory investigations concerned with sulfur chemistry in several astrophysical ice analogues. Specifically, we review (i) the spectroscopy of sulfur-containing astrochemical molecules in the condensed phase, (ii) atom and radical addition reactions, (iii) the thermal processing of sulfur-bearing ices, (iv) photochemical experiments, (v) the non-reactive charged particle radiolysis of sulfur-bearing ices, and (vi) sulfur ion bombardment of and implantation in ice analogues. Potential future studies in the field of solid phase sulfur astrochemistry are also discussed in the context of forthcoming space missions, such as the NASA James Webb Space Telescope and the ESA Jupiter Icy Moons Explorer mission.
doi_str_mv 10.1007/s11214-021-00792-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510843701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510843701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-f64c0daf63960412ba3918e1b8785f65874b0306bcc4630e23af1b81a23b220d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysUnWWyl-FAqC1XPIpoluaZua7Cr996au4M3TzDDvMx8vQpcUrimAusmUMioIMEpKWTMCR2hEK8VILRU7RiMAronkoE_RWc4rgAOmRqhe9OvQJzxzHk9yl6J795u2JPtbPMHP_rP1XzgGPLdNTLaLaY8XXb9sfT5HJ8Gus7_4jWP0en_3Mn0k86eH2XQyJ06wuiNBCgdLGySvJQjKGstrqj1ttNJVkJVWogEOsnFOlPs84zaUJrWMN4zBko_R1TB3l-JH73NnVrFP27LSsIqCFlwBLSo2qFyKOScfzC61G5v2hoI5_GoGi0yxyPxYZKBAfIByEW_ffPob_Q_1DT_TZww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510843701</pqid></control><display><type>article</type><title>Sulfur Ice Astrochemistry: A Review of Laboratory Studies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mifsud, Duncan V. ; Kaňuchová, Zuzana ; Herczku, Péter ; Ioppolo, Sergio ; Juhász, Zoltán ; Kovács, Sándor T. S. ; Mason, Nigel J. ; McCullough, Robert W. ; Sulik, Béla</creator><creatorcontrib>Mifsud, Duncan V. ; Kaňuchová, Zuzana ; Herczku, Péter ; Ioppolo, Sergio ; Juhász, Zoltán ; Kovács, Sándor T. S. ; Mason, Nigel J. ; McCullough, Robert W. ; Sulik, Béla</creatorcontrib><description>Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of research currently being explored is the laboratory processing of astrophysical ice analogues. Such research involves the synthesis of an ice of specific morphology and chemical composition at temperatures and pressures relevant to a selected astrophysical setting (such as the interstellar medium or the surfaces of icy moons). Subsequent processing of the ice under conditions that simulate the selected astrophysical setting commonly involves radiolysis, photolysis, thermal processing, neutral-neutral fragment chemistry, or any combination of these, and has been the subject of several studies. The in-situ changes in ice morphology and chemistry occurring during such processing are often monitored via spectroscopic or spectrometric techniques. In this paper, we have reviewed the results of laboratory investigations concerned with sulfur chemistry in several astrophysical ice analogues. Specifically, we review (i) the spectroscopy of sulfur-containing astrochemical molecules in the condensed phase, (ii) atom and radical addition reactions, (iii) the thermal processing of sulfur-bearing ices, (iv) photochemical experiments, (v) the non-reactive charged particle radiolysis of sulfur-bearing ices, and (vi) sulfur ion bombardment of and implantation in ice analogues. Potential future studies in the field of solid phase sulfur astrochemistry are also discussed in the context of forthcoming space missions, such as the NASA James Webb Space Telescope and the ESA Jupiter Icy Moons Explorer mission.</description><identifier>ISSN: 0038-6308</identifier><identifier>EISSN: 1572-9672</identifier><identifier>DOI: 10.1007/s11214-021-00792-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astrochemistry ; Astrophysics and Astroparticles ; Atmospheric chemistry ; Charged particles ; Chemical composition ; Chemistry ; Geochemistry ; Ice ; Icy satellites ; Interstellar matter ; Interstellar medium ; Ion bombardment ; Ion implantation ; James Webb Space Telescope ; Jupiter ; Laboratories ; Moon ; Morphology ; Photochemicals ; Photolysis ; Physics ; Physics and Astronomy ; Planetary geology ; Planetology ; Radiolysis ; Solid phases ; Space Exploration and Astronautics ; Space missions ; Space Sciences (including Extraterrestrial Physics ; Space telescopes ; Spectrometric techniques ; Spectrometry ; Spectroscopy ; Sulfur</subject><ispartof>Space science reviews, 2021-02, Vol.217 (1), Article 14</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-f64c0daf63960412ba3918e1b8785f65874b0306bcc4630e23af1b81a23b220d3</citedby><cites>FETCH-LOGICAL-c429t-f64c0daf63960412ba3918e1b8785f65874b0306bcc4630e23af1b81a23b220d3</cites><orcidid>0000-0002-0379-354X ; 0000-0002-2271-1781 ; 0000-0001-8845-6202 ; 0000-0001-8088-5766 ; 0000-0003-3612-0437 ; 0000-0001-5332-3901 ; 0000-0002-1046-1375 ; 0000-0002-4468-8324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11214-021-00792-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11214-021-00792-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Mifsud, Duncan V.</creatorcontrib><creatorcontrib>Kaňuchová, Zuzana</creatorcontrib><creatorcontrib>Herczku, Péter</creatorcontrib><creatorcontrib>Ioppolo, Sergio</creatorcontrib><creatorcontrib>Juhász, Zoltán</creatorcontrib><creatorcontrib>Kovács, Sándor T. S.</creatorcontrib><creatorcontrib>Mason, Nigel J.</creatorcontrib><creatorcontrib>McCullough, Robert W.</creatorcontrib><creatorcontrib>Sulik, Béla</creatorcontrib><title>Sulfur Ice Astrochemistry: A Review of Laboratory Studies</title><title>Space science reviews</title><addtitle>Space Sci Rev</addtitle><description>Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of research currently being explored is the laboratory processing of astrophysical ice analogues. Such research involves the synthesis of an ice of specific morphology and chemical composition at temperatures and pressures relevant to a selected astrophysical setting (such as the interstellar medium or the surfaces of icy moons). Subsequent processing of the ice under conditions that simulate the selected astrophysical setting commonly involves radiolysis, photolysis, thermal processing, neutral-neutral fragment chemistry, or any combination of these, and has been the subject of several studies. The in-situ changes in ice morphology and chemistry occurring during such processing are often monitored via spectroscopic or spectrometric techniques. In this paper, we have reviewed the results of laboratory investigations concerned with sulfur chemistry in several astrophysical ice analogues. Specifically, we review (i) the spectroscopy of sulfur-containing astrochemical molecules in the condensed phase, (ii) atom and radical addition reactions, (iii) the thermal processing of sulfur-bearing ices, (iv) photochemical experiments, (v) the non-reactive charged particle radiolysis of sulfur-bearing ices, and (vi) sulfur ion bombardment of and implantation in ice analogues. Potential future studies in the field of solid phase sulfur astrochemistry are also discussed in the context of forthcoming space missions, such as the NASA James Webb Space Telescope and the ESA Jupiter Icy Moons Explorer mission.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astrochemistry</subject><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric chemistry</subject><subject>Charged particles</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Geochemistry</subject><subject>Ice</subject><subject>Icy satellites</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Ion bombardment</subject><subject>Ion implantation</subject><subject>James Webb Space Telescope</subject><subject>Jupiter</subject><subject>Laboratories</subject><subject>Moon</subject><subject>Morphology</subject><subject>Photochemicals</subject><subject>Photolysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planetary geology</subject><subject>Planetology</subject><subject>Radiolysis</subject><subject>Solid phases</subject><subject>Space Exploration and Astronautics</subject><subject>Space missions</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Space telescopes</subject><subject>Spectrometric techniques</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>Sulfur</subject><issn>0038-6308</issn><issn>1572-9672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysUnWWyl-FAqC1XPIpoluaZua7Cr996au4M3TzDDvMx8vQpcUrimAusmUMioIMEpKWTMCR2hEK8VILRU7RiMAronkoE_RWc4rgAOmRqhe9OvQJzxzHk9yl6J795u2JPtbPMHP_rP1XzgGPLdNTLaLaY8XXb9sfT5HJ8Gus7_4jWP0en_3Mn0k86eH2XQyJ06wuiNBCgdLGySvJQjKGstrqj1ttNJVkJVWogEOsnFOlPs84zaUJrWMN4zBko_R1TB3l-JH73NnVrFP27LSsIqCFlwBLSo2qFyKOScfzC61G5v2hoI5_GoGi0yxyPxYZKBAfIByEW_ffPob_Q_1DT_TZww</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Mifsud, Duncan V.</creator><creator>Kaňuchová, Zuzana</creator><creator>Herczku, Péter</creator><creator>Ioppolo, Sergio</creator><creator>Juhász, Zoltán</creator><creator>Kovács, Sándor T. S.</creator><creator>Mason, Nigel J.</creator><creator>McCullough, Robert W.</creator><creator>Sulik, Béla</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0379-354X</orcidid><orcidid>https://orcid.org/0000-0002-2271-1781</orcidid><orcidid>https://orcid.org/0000-0001-8845-6202</orcidid><orcidid>https://orcid.org/0000-0001-8088-5766</orcidid><orcidid>https://orcid.org/0000-0003-3612-0437</orcidid><orcidid>https://orcid.org/0000-0001-5332-3901</orcidid><orcidid>https://orcid.org/0000-0002-1046-1375</orcidid><orcidid>https://orcid.org/0000-0002-4468-8324</orcidid></search><sort><creationdate>20210201</creationdate><title>Sulfur Ice Astrochemistry: A Review of Laboratory Studies</title><author>Mifsud, Duncan V. ; Kaňuchová, Zuzana ; Herczku, Péter ; Ioppolo, Sergio ; Juhász, Zoltán ; Kovács, Sándor T. S. ; Mason, Nigel J. ; McCullough, Robert W. ; Sulik, Béla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-f64c0daf63960412ba3918e1b8785f65874b0306bcc4630e23af1b81a23b220d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astrochemistry</topic><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric chemistry</topic><topic>Charged particles</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Geochemistry</topic><topic>Ice</topic><topic>Icy satellites</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Ion bombardment</topic><topic>Ion implantation</topic><topic>James Webb Space Telescope</topic><topic>Jupiter</topic><topic>Laboratories</topic><topic>Moon</topic><topic>Morphology</topic><topic>Photochemicals</topic><topic>Photolysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planetary geology</topic><topic>Planetology</topic><topic>Radiolysis</topic><topic>Solid phases</topic><topic>Space Exploration and Astronautics</topic><topic>Space missions</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Space telescopes</topic><topic>Spectrometric techniques</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mifsud, Duncan V.</creatorcontrib><creatorcontrib>Kaňuchová, Zuzana</creatorcontrib><creatorcontrib>Herczku, Péter</creatorcontrib><creatorcontrib>Ioppolo, Sergio</creatorcontrib><creatorcontrib>Juhász, Zoltán</creatorcontrib><creatorcontrib>Kovács, Sándor T. S.</creatorcontrib><creatorcontrib>Mason, Nigel J.</creatorcontrib><creatorcontrib>McCullough, Robert W.</creatorcontrib><creatorcontrib>Sulik, Béla</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Space science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mifsud, Duncan V.</au><au>Kaňuchová, Zuzana</au><au>Herczku, Péter</au><au>Ioppolo, Sergio</au><au>Juhász, Zoltán</au><au>Kovács, Sándor T. S.</au><au>Mason, Nigel J.</au><au>McCullough, Robert W.</au><au>Sulik, Béla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur Ice Astrochemistry: A Review of Laboratory Studies</atitle><jtitle>Space science reviews</jtitle><stitle>Space Sci Rev</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>217</volume><issue>1</issue><artnum>14</artnum><issn>0038-6308</issn><eissn>1572-9672</eissn><abstract>Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of research currently being explored is the laboratory processing of astrophysical ice analogues. Such research involves the synthesis of an ice of specific morphology and chemical composition at temperatures and pressures relevant to a selected astrophysical setting (such as the interstellar medium or the surfaces of icy moons). Subsequent processing of the ice under conditions that simulate the selected astrophysical setting commonly involves radiolysis, photolysis, thermal processing, neutral-neutral fragment chemistry, or any combination of these, and has been the subject of several studies. The in-situ changes in ice morphology and chemistry occurring during such processing are often monitored via spectroscopic or spectrometric techniques. In this paper, we have reviewed the results of laboratory investigations concerned with sulfur chemistry in several astrophysical ice analogues. Specifically, we review (i) the spectroscopy of sulfur-containing astrochemical molecules in the condensed phase, (ii) atom and radical addition reactions, (iii) the thermal processing of sulfur-bearing ices, (iv) photochemical experiments, (v) the non-reactive charged particle radiolysis of sulfur-bearing ices, and (vi) sulfur ion bombardment of and implantation in ice analogues. Potential future studies in the field of solid phase sulfur astrochemistry are also discussed in the context of forthcoming space missions, such as the NASA James Webb Space Telescope and the ESA Jupiter Icy Moons Explorer mission.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11214-021-00792-0</doi><orcidid>https://orcid.org/0000-0002-0379-354X</orcidid><orcidid>https://orcid.org/0000-0002-2271-1781</orcidid><orcidid>https://orcid.org/0000-0001-8845-6202</orcidid><orcidid>https://orcid.org/0000-0001-8088-5766</orcidid><orcidid>https://orcid.org/0000-0003-3612-0437</orcidid><orcidid>https://orcid.org/0000-0001-5332-3901</orcidid><orcidid>https://orcid.org/0000-0002-1046-1375</orcidid><orcidid>https://orcid.org/0000-0002-4468-8324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0038-6308
ispartof Space science reviews, 2021-02, Vol.217 (1), Article 14
issn 0038-6308
1572-9672
language eng
recordid cdi_proquest_journals_2510843701
source SpringerLink Journals - AutoHoldings
subjects Aerospace Technology and Astronautics
Astrochemistry
Astrophysics and Astroparticles
Atmospheric chemistry
Charged particles
Chemical composition
Chemistry
Geochemistry
Ice
Icy satellites
Interstellar matter
Interstellar medium
Ion bombardment
Ion implantation
James Webb Space Telescope
Jupiter
Laboratories
Moon
Morphology
Photochemicals
Photolysis
Physics
Physics and Astronomy
Planetary geology
Planetology
Radiolysis
Solid phases
Space Exploration and Astronautics
Space missions
Space Sciences (including Extraterrestrial Physics
Space telescopes
Spectrometric techniques
Spectrometry
Spectroscopy
Sulfur
title Sulfur Ice Astrochemistry: A Review of Laboratory Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur%20Ice%20Astrochemistry:%20A%20Review%20of%20Laboratory%20Studies&rft.jtitle=Space%20science%20reviews&rft.au=Mifsud,%20Duncan%20V.&rft.date=2021-02-01&rft.volume=217&rft.issue=1&rft.artnum=14&rft.issn=0038-6308&rft.eissn=1572-9672&rft_id=info:doi/10.1007/s11214-021-00792-0&rft_dat=%3Cproquest_cross%3E2510843701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510843701&rft_id=info:pmid/&rfr_iscdi=true