Sulfur Ice Astrochemistry: A Review of Laboratory Studies
Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of r...
Gespeichert in:
Veröffentlicht in: | Space science reviews 2021-02, Vol.217 (1), Article 14 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Space science reviews |
container_volume | 217 |
creator | Mifsud, Duncan V. Kaňuchová, Zuzana Herczku, Péter Ioppolo, Sergio Juhász, Zoltán Kovács, Sándor T. S. Mason, Nigel J. McCullough, Robert W. Sulik, Béla |
description | Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of research currently being explored is the laboratory processing of astrophysical ice analogues. Such research involves the synthesis of an ice of specific morphology and chemical composition at temperatures and pressures relevant to a selected astrophysical setting (such as the interstellar medium or the surfaces of icy moons). Subsequent processing of the ice under conditions that simulate the selected astrophysical setting commonly involves radiolysis, photolysis, thermal processing, neutral-neutral fragment chemistry, or any combination of these, and has been the subject of several studies. The
in-situ
changes in ice morphology and chemistry occurring during such processing are often monitored via spectroscopic or spectrometric techniques. In this paper, we have reviewed the results of laboratory investigations concerned with sulfur chemistry in several astrophysical ice analogues. Specifically, we review (i) the spectroscopy of sulfur-containing astrochemical molecules in the condensed phase, (ii) atom and radical addition reactions, (iii) the thermal processing of sulfur-bearing ices, (iv) photochemical experiments, (v) the non-reactive charged particle radiolysis of sulfur-bearing ices, and (vi) sulfur ion bombardment of and implantation in ice analogues. Potential future studies in the field of solid phase sulfur astrochemistry are also discussed in the context of forthcoming space missions, such as the NASA James Webb Space Telescope and the ESA Jupiter Icy Moons Explorer mission. |
doi_str_mv | 10.1007/s11214-021-00792-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510843701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510843701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-f64c0daf63960412ba3918e1b8785f65874b0306bcc4630e23af1b81a23b220d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysUnWWyl-FAqC1XPIpoluaZua7Cr996au4M3TzDDvMx8vQpcUrimAusmUMioIMEpKWTMCR2hEK8VILRU7RiMAronkoE_RWc4rgAOmRqhe9OvQJzxzHk9yl6J795u2JPtbPMHP_rP1XzgGPLdNTLaLaY8XXb9sfT5HJ8Gus7_4jWP0en_3Mn0k86eH2XQyJ06wuiNBCgdLGySvJQjKGstrqj1ttNJVkJVWogEOsnFOlPs84zaUJrWMN4zBko_R1TB3l-JH73NnVrFP27LSsIqCFlwBLSo2qFyKOScfzC61G5v2hoI5_GoGi0yxyPxYZKBAfIByEW_ffPob_Q_1DT_TZww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510843701</pqid></control><display><type>article</type><title>Sulfur Ice Astrochemistry: A Review of Laboratory Studies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mifsud, Duncan V. ; Kaňuchová, Zuzana ; Herczku, Péter ; Ioppolo, Sergio ; Juhász, Zoltán ; Kovács, Sándor T. S. ; Mason, Nigel J. ; McCullough, Robert W. ; Sulik, Béla</creator><creatorcontrib>Mifsud, Duncan V. ; Kaňuchová, Zuzana ; Herczku, Péter ; Ioppolo, Sergio ; Juhász, Zoltán ; Kovács, Sándor T. S. ; Mason, Nigel J. ; McCullough, Robert W. ; Sulik, Béla</creatorcontrib><description>Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of research currently being explored is the laboratory processing of astrophysical ice analogues. Such research involves the synthesis of an ice of specific morphology and chemical composition at temperatures and pressures relevant to a selected astrophysical setting (such as the interstellar medium or the surfaces of icy moons). Subsequent processing of the ice under conditions that simulate the selected astrophysical setting commonly involves radiolysis, photolysis, thermal processing, neutral-neutral fragment chemistry, or any combination of these, and has been the subject of several studies. The
in-situ
changes in ice morphology and chemistry occurring during such processing are often monitored via spectroscopic or spectrometric techniques. In this paper, we have reviewed the results of laboratory investigations concerned with sulfur chemistry in several astrophysical ice analogues. Specifically, we review (i) the spectroscopy of sulfur-containing astrochemical molecules in the condensed phase, (ii) atom and radical addition reactions, (iii) the thermal processing of sulfur-bearing ices, (iv) photochemical experiments, (v) the non-reactive charged particle radiolysis of sulfur-bearing ices, and (vi) sulfur ion bombardment of and implantation in ice analogues. Potential future studies in the field of solid phase sulfur astrochemistry are also discussed in the context of forthcoming space missions, such as the NASA James Webb Space Telescope and the ESA Jupiter Icy Moons Explorer mission.</description><identifier>ISSN: 0038-6308</identifier><identifier>EISSN: 1572-9672</identifier><identifier>DOI: 10.1007/s11214-021-00792-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astrochemistry ; Astrophysics and Astroparticles ; Atmospheric chemistry ; Charged particles ; Chemical composition ; Chemistry ; Geochemistry ; Ice ; Icy satellites ; Interstellar matter ; Interstellar medium ; Ion bombardment ; Ion implantation ; James Webb Space Telescope ; Jupiter ; Laboratories ; Moon ; Morphology ; Photochemicals ; Photolysis ; Physics ; Physics and Astronomy ; Planetary geology ; Planetology ; Radiolysis ; Solid phases ; Space Exploration and Astronautics ; Space missions ; Space Sciences (including Extraterrestrial Physics ; Space telescopes ; Spectrometric techniques ; Spectrometry ; Spectroscopy ; Sulfur</subject><ispartof>Space science reviews, 2021-02, Vol.217 (1), Article 14</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-f64c0daf63960412ba3918e1b8785f65874b0306bcc4630e23af1b81a23b220d3</citedby><cites>FETCH-LOGICAL-c429t-f64c0daf63960412ba3918e1b8785f65874b0306bcc4630e23af1b81a23b220d3</cites><orcidid>0000-0002-0379-354X ; 0000-0002-2271-1781 ; 0000-0001-8845-6202 ; 0000-0001-8088-5766 ; 0000-0003-3612-0437 ; 0000-0001-5332-3901 ; 0000-0002-1046-1375 ; 0000-0002-4468-8324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11214-021-00792-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11214-021-00792-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Mifsud, Duncan V.</creatorcontrib><creatorcontrib>Kaňuchová, Zuzana</creatorcontrib><creatorcontrib>Herczku, Péter</creatorcontrib><creatorcontrib>Ioppolo, Sergio</creatorcontrib><creatorcontrib>Juhász, Zoltán</creatorcontrib><creatorcontrib>Kovács, Sándor T. S.</creatorcontrib><creatorcontrib>Mason, Nigel J.</creatorcontrib><creatorcontrib>McCullough, Robert W.</creatorcontrib><creatorcontrib>Sulik, Béla</creatorcontrib><title>Sulfur Ice Astrochemistry: A Review of Laboratory Studies</title><title>Space science reviews</title><addtitle>Space Sci Rev</addtitle><description>Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of research currently being explored is the laboratory processing of astrophysical ice analogues. Such research involves the synthesis of an ice of specific morphology and chemical composition at temperatures and pressures relevant to a selected astrophysical setting (such as the interstellar medium or the surfaces of icy moons). Subsequent processing of the ice under conditions that simulate the selected astrophysical setting commonly involves radiolysis, photolysis, thermal processing, neutral-neutral fragment chemistry, or any combination of these, and has been the subject of several studies. The
in-situ
changes in ice morphology and chemistry occurring during such processing are often monitored via spectroscopic or spectrometric techniques. In this paper, we have reviewed the results of laboratory investigations concerned with sulfur chemistry in several astrophysical ice analogues. Specifically, we review (i) the spectroscopy of sulfur-containing astrochemical molecules in the condensed phase, (ii) atom and radical addition reactions, (iii) the thermal processing of sulfur-bearing ices, (iv) photochemical experiments, (v) the non-reactive charged particle radiolysis of sulfur-bearing ices, and (vi) sulfur ion bombardment of and implantation in ice analogues. Potential future studies in the field of solid phase sulfur astrochemistry are also discussed in the context of forthcoming space missions, such as the NASA James Webb Space Telescope and the ESA Jupiter Icy Moons Explorer mission.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astrochemistry</subject><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric chemistry</subject><subject>Charged particles</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Geochemistry</subject><subject>Ice</subject><subject>Icy satellites</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Ion bombardment</subject><subject>Ion implantation</subject><subject>James Webb Space Telescope</subject><subject>Jupiter</subject><subject>Laboratories</subject><subject>Moon</subject><subject>Morphology</subject><subject>Photochemicals</subject><subject>Photolysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planetary geology</subject><subject>Planetology</subject><subject>Radiolysis</subject><subject>Solid phases</subject><subject>Space Exploration and Astronautics</subject><subject>Space missions</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Space telescopes</subject><subject>Spectrometric techniques</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>Sulfur</subject><issn>0038-6308</issn><issn>1572-9672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysUnWWyl-FAqC1XPIpoluaZua7Cr996au4M3TzDDvMx8vQpcUrimAusmUMioIMEpKWTMCR2hEK8VILRU7RiMAronkoE_RWc4rgAOmRqhe9OvQJzxzHk9yl6J795u2JPtbPMHP_rP1XzgGPLdNTLaLaY8XXb9sfT5HJ8Gus7_4jWP0en_3Mn0k86eH2XQyJ06wuiNBCgdLGySvJQjKGstrqj1ttNJVkJVWogEOsnFOlPs84zaUJrWMN4zBko_R1TB3l-JH73NnVrFP27LSsIqCFlwBLSo2qFyKOScfzC61G5v2hoI5_GoGi0yxyPxYZKBAfIByEW_ffPob_Q_1DT_TZww</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Mifsud, Duncan V.</creator><creator>Kaňuchová, Zuzana</creator><creator>Herczku, Péter</creator><creator>Ioppolo, Sergio</creator><creator>Juhász, Zoltán</creator><creator>Kovács, Sándor T. S.</creator><creator>Mason, Nigel J.</creator><creator>McCullough, Robert W.</creator><creator>Sulik, Béla</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0379-354X</orcidid><orcidid>https://orcid.org/0000-0002-2271-1781</orcidid><orcidid>https://orcid.org/0000-0001-8845-6202</orcidid><orcidid>https://orcid.org/0000-0001-8088-5766</orcidid><orcidid>https://orcid.org/0000-0003-3612-0437</orcidid><orcidid>https://orcid.org/0000-0001-5332-3901</orcidid><orcidid>https://orcid.org/0000-0002-1046-1375</orcidid><orcidid>https://orcid.org/0000-0002-4468-8324</orcidid></search><sort><creationdate>20210201</creationdate><title>Sulfur Ice Astrochemistry: A Review of Laboratory Studies</title><author>Mifsud, Duncan V. ; Kaňuchová, Zuzana ; Herczku, Péter ; Ioppolo, Sergio ; Juhász, Zoltán ; Kovács, Sándor T. S. ; Mason, Nigel J. ; McCullough, Robert W. ; Sulik, Béla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-f64c0daf63960412ba3918e1b8785f65874b0306bcc4630e23af1b81a23b220d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astrochemistry</topic><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric chemistry</topic><topic>Charged particles</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Geochemistry</topic><topic>Ice</topic><topic>Icy satellites</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Ion bombardment</topic><topic>Ion implantation</topic><topic>James Webb Space Telescope</topic><topic>Jupiter</topic><topic>Laboratories</topic><topic>Moon</topic><topic>Morphology</topic><topic>Photochemicals</topic><topic>Photolysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planetary geology</topic><topic>Planetology</topic><topic>Radiolysis</topic><topic>Solid phases</topic><topic>Space Exploration and Astronautics</topic><topic>Space missions</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Space telescopes</topic><topic>Spectrometric techniques</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mifsud, Duncan V.</creatorcontrib><creatorcontrib>Kaňuchová, Zuzana</creatorcontrib><creatorcontrib>Herczku, Péter</creatorcontrib><creatorcontrib>Ioppolo, Sergio</creatorcontrib><creatorcontrib>Juhász, Zoltán</creatorcontrib><creatorcontrib>Kovács, Sándor T. S.</creatorcontrib><creatorcontrib>Mason, Nigel J.</creatorcontrib><creatorcontrib>McCullough, Robert W.</creatorcontrib><creatorcontrib>Sulik, Béla</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Space science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mifsud, Duncan V.</au><au>Kaňuchová, Zuzana</au><au>Herczku, Péter</au><au>Ioppolo, Sergio</au><au>Juhász, Zoltán</au><au>Kovács, Sándor T. S.</au><au>Mason, Nigel J.</au><au>McCullough, Robert W.</au><au>Sulik, Béla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur Ice Astrochemistry: A Review of Laboratory Studies</atitle><jtitle>Space science reviews</jtitle><stitle>Space Sci Rev</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>217</volume><issue>1</issue><artnum>14</artnum><issn>0038-6308</issn><eissn>1572-9672</eissn><abstract>Sulfur is the tenth most abundant element in the universe and is known to play a significant role in biological systems. Accordingly, in recent years there has been increased interest in the role of sulfur in astrochemical reactions and planetary geology and geochemistry. Among the many avenues of research currently being explored is the laboratory processing of astrophysical ice analogues. Such research involves the synthesis of an ice of specific morphology and chemical composition at temperatures and pressures relevant to a selected astrophysical setting (such as the interstellar medium or the surfaces of icy moons). Subsequent processing of the ice under conditions that simulate the selected astrophysical setting commonly involves radiolysis, photolysis, thermal processing, neutral-neutral fragment chemistry, or any combination of these, and has been the subject of several studies. The
in-situ
changes in ice morphology and chemistry occurring during such processing are often monitored via spectroscopic or spectrometric techniques. In this paper, we have reviewed the results of laboratory investigations concerned with sulfur chemistry in several astrophysical ice analogues. Specifically, we review (i) the spectroscopy of sulfur-containing astrochemical molecules in the condensed phase, (ii) atom and radical addition reactions, (iii) the thermal processing of sulfur-bearing ices, (iv) photochemical experiments, (v) the non-reactive charged particle radiolysis of sulfur-bearing ices, and (vi) sulfur ion bombardment of and implantation in ice analogues. Potential future studies in the field of solid phase sulfur astrochemistry are also discussed in the context of forthcoming space missions, such as the NASA James Webb Space Telescope and the ESA Jupiter Icy Moons Explorer mission.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11214-021-00792-0</doi><orcidid>https://orcid.org/0000-0002-0379-354X</orcidid><orcidid>https://orcid.org/0000-0002-2271-1781</orcidid><orcidid>https://orcid.org/0000-0001-8845-6202</orcidid><orcidid>https://orcid.org/0000-0001-8088-5766</orcidid><orcidid>https://orcid.org/0000-0003-3612-0437</orcidid><orcidid>https://orcid.org/0000-0001-5332-3901</orcidid><orcidid>https://orcid.org/0000-0002-1046-1375</orcidid><orcidid>https://orcid.org/0000-0002-4468-8324</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-6308 |
ispartof | Space science reviews, 2021-02, Vol.217 (1), Article 14 |
issn | 0038-6308 1572-9672 |
language | eng |
recordid | cdi_proquest_journals_2510843701 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aerospace Technology and Astronautics Astrochemistry Astrophysics and Astroparticles Atmospheric chemistry Charged particles Chemical composition Chemistry Geochemistry Ice Icy satellites Interstellar matter Interstellar medium Ion bombardment Ion implantation James Webb Space Telescope Jupiter Laboratories Moon Morphology Photochemicals Photolysis Physics Physics and Astronomy Planetary geology Planetology Radiolysis Solid phases Space Exploration and Astronautics Space missions Space Sciences (including Extraterrestrial Physics Space telescopes Spectrometric techniques Spectrometry Spectroscopy Sulfur |
title | Sulfur Ice Astrochemistry: A Review of Laboratory Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur%20Ice%20Astrochemistry:%20A%20Review%20of%20Laboratory%20Studies&rft.jtitle=Space%20science%20reviews&rft.au=Mifsud,%20Duncan%20V.&rft.date=2021-02-01&rft.volume=217&rft.issue=1&rft.artnum=14&rft.issn=0038-6308&rft.eissn=1572-9672&rft_id=info:doi/10.1007/s11214-021-00792-0&rft_dat=%3Cproquest_cross%3E2510843701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510843701&rft_id=info:pmid/&rfr_iscdi=true |