Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel
Degradation of various types of lignocellulosic biomass that require harsh pretreatment and abnormal operating conditions often occur in presence of a large amount of salt. Therefore, identification and use of stable and halotolerant cellulases is essential for industrial lignocellulose applications...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2021-04, Vol.28 (6), p.3485-3503 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3503 |
---|---|
container_issue | 6 |
container_start_page | 3485 |
container_title | Cellulose (London) |
container_volume | 28 |
creator | Motamedi, Elaheh Sadeghian Motahar, Seyedeh Fatemeh Maleki, Morteza Kavousi, Kaveh Ariaeenejad, Shohreh Moosavi-Movahedi, Ali A. Hosseini Salekdeh, Ghasem |
description | Degradation of various types of lignocellulosic biomass that require harsh pretreatment and abnormal operating conditions often occur in presence of a large amount of salt. Therefore, identification and use of stable and halotolerant cellulases is essential for industrial lignocellulose applications under extreme pH and temperature. This study focuses on discovering a novel thermostable and halotolerant cellulase from rumen microbiota by employing a multi-stage in-silico screening pipeline. According to this cost-effective strategy, the new PersiCel3 was cloned, expressed, purified, and characterized. The enzyme demonstrated suitable thermal and storage stability. To improve the thermal stability and halotolerance of the enzyme, it was immobilized on the CMC-based hydrogel. The maximum activity of the PersiCel3 could be seen in the concentration of 3 M NaCl for both free (132.46%) and immobilized (197.47%) enzyme. Applying both the free and immobilized PersiCel3 on degrading the rice straw in saline condition leads to an increment in generating the reducing sugars. The immobilized enzyme presented a significant enhancement in the hydrolysis of rice straw in saline conditions compared to its free form. Our results demonstrated the potential of the robust PersiCel3 in the harsh condition and the superb performance of the immobilized enzyme for the lignocellulosic biomass industries to increase the yield of value-added products in high temperatures and saline conditions.
Graphic abstract |
doi_str_mv | 10.1007/s10570-021-03727-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510635537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510635537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c9fa1e443b7190ecbc41a5c65c9b0558ebd50ef71ee079f56755bd16ffab92a23</originalsourceid><addsrcrecordid>eNp9kc1u3CAUhVHVSJ0meYGukLqmBTwYs6yi_FSK1E0idYcAX3uIMEzBE8V5qj5imDhVd1mxuN93DtJB6Auj3xil8nthVEhKKGeENpJL0n1AGyYkJ13Hf39EG6paVc-N-oQ-l_JAKVWSsw36e78fs-l9HPG8AwzxeZnM7B3eLX1OYSm-4DTg4MeYHIRwCKnUq_VpMqVgu2A_Tcn64J-rluIRnmA2I8Q0Aekh-0focUyPEPDOhDSnANnEGa9ppgCu1rHbmWzT01Lt3RLwvzIgtjL9-p8Rwhk6GUwocP72nqL7q8u7ixty--v658WPW-Ia0c7EqcEw2G4bK5mi4KzbMiNcK5yyVIgObC8oDJIBUKkG0UohbM_aYTBWccObU_R1zd3n9OcAZdYP6ZBjrdRcMNo2QjSyUnylXE6lZBj0PvvJ5EUzqo_L6HUZXZfRr8vorkrNKpUKxxHy_-h3rBfm3phA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510635537</pqid></control><display><type>article</type><title>Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Motamedi, Elaheh ; Sadeghian Motahar, Seyedeh Fatemeh ; Maleki, Morteza ; Kavousi, Kaveh ; Ariaeenejad, Shohreh ; Moosavi-Movahedi, Ali A. ; Hosseini Salekdeh, Ghasem</creator><creatorcontrib>Motamedi, Elaheh ; Sadeghian Motahar, Seyedeh Fatemeh ; Maleki, Morteza ; Kavousi, Kaveh ; Ariaeenejad, Shohreh ; Moosavi-Movahedi, Ali A. ; Hosseini Salekdeh, Ghasem</creatorcontrib><description>Degradation of various types of lignocellulosic biomass that require harsh pretreatment and abnormal operating conditions often occur in presence of a large amount of salt. Therefore, identification and use of stable and halotolerant cellulases is essential for industrial lignocellulose applications under extreme pH and temperature. This study focuses on discovering a novel thermostable and halotolerant cellulase from rumen microbiota by employing a multi-stage in-silico screening pipeline. According to this cost-effective strategy, the new PersiCel3 was cloned, expressed, purified, and characterized. The enzyme demonstrated suitable thermal and storage stability. To improve the thermal stability and halotolerance of the enzyme, it was immobilized on the CMC-based hydrogel. The maximum activity of the PersiCel3 could be seen in the concentration of 3 M NaCl for both free (132.46%) and immobilized (197.47%) enzyme. Applying both the free and immobilized PersiCel3 on degrading the rice straw in saline condition leads to an increment in generating the reducing sugars. The immobilized enzyme presented a significant enhancement in the hydrolysis of rice straw in saline conditions compared to its free form. Our results demonstrated the potential of the robust PersiCel3 in the harsh condition and the superb performance of the immobilized enzyme for the lignocellulosic biomass industries to increase the yield of value-added products in high temperatures and saline conditions.
Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-021-03727-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomass ; Bioorganic Chemistry ; Carboxymethyl cellulose ; Cellulase ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Enzymes ; Free form ; Glass ; Hydrogels ; Hydrolysis ; Lignocellulose ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Pretreatment ; Storage stability ; Sugar ; Sustainable Development ; Thermal stability</subject><ispartof>Cellulose (London), 2021-04, Vol.28 (6), p.3485-3503</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c9fa1e443b7190ecbc41a5c65c9b0558ebd50ef71ee079f56755bd16ffab92a23</citedby><cites>FETCH-LOGICAL-c356t-c9fa1e443b7190ecbc41a5c65c9b0558ebd50ef71ee079f56755bd16ffab92a23</cites><orcidid>0000-0001-6385-5098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-021-03727-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-021-03727-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Motamedi, Elaheh</creatorcontrib><creatorcontrib>Sadeghian Motahar, Seyedeh Fatemeh</creatorcontrib><creatorcontrib>Maleki, Morteza</creatorcontrib><creatorcontrib>Kavousi, Kaveh</creatorcontrib><creatorcontrib>Ariaeenejad, Shohreh</creatorcontrib><creatorcontrib>Moosavi-Movahedi, Ali A.</creatorcontrib><creatorcontrib>Hosseini Salekdeh, Ghasem</creatorcontrib><title>Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Degradation of various types of lignocellulosic biomass that require harsh pretreatment and abnormal operating conditions often occur in presence of a large amount of salt. Therefore, identification and use of stable and halotolerant cellulases is essential for industrial lignocellulose applications under extreme pH and temperature. This study focuses on discovering a novel thermostable and halotolerant cellulase from rumen microbiota by employing a multi-stage in-silico screening pipeline. According to this cost-effective strategy, the new PersiCel3 was cloned, expressed, purified, and characterized. The enzyme demonstrated suitable thermal and storage stability. To improve the thermal stability and halotolerance of the enzyme, it was immobilized on the CMC-based hydrogel. The maximum activity of the PersiCel3 could be seen in the concentration of 3 M NaCl for both free (132.46%) and immobilized (197.47%) enzyme. Applying both the free and immobilized PersiCel3 on degrading the rice straw in saline condition leads to an increment in generating the reducing sugars. The immobilized enzyme presented a significant enhancement in the hydrolysis of rice straw in saline conditions compared to its free form. Our results demonstrated the potential of the robust PersiCel3 in the harsh condition and the superb performance of the immobilized enzyme for the lignocellulosic biomass industries to increase the yield of value-added products in high temperatures and saline conditions.
Graphic abstract</description><subject>Biomass</subject><subject>Bioorganic Chemistry</subject><subject>Carboxymethyl cellulose</subject><subject>Cellulase</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Enzymes</subject><subject>Free form</subject><subject>Glass</subject><subject>Hydrogels</subject><subject>Hydrolysis</subject><subject>Lignocellulose</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pretreatment</subject><subject>Storage stability</subject><subject>Sugar</subject><subject>Sustainable Development</subject><subject>Thermal stability</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1u3CAUhVHVSJ0meYGukLqmBTwYs6yi_FSK1E0idYcAX3uIMEzBE8V5qj5imDhVd1mxuN93DtJB6Auj3xil8nthVEhKKGeENpJL0n1AGyYkJ13Hf39EG6paVc-N-oQ-l_JAKVWSsw36e78fs-l9HPG8AwzxeZnM7B3eLX1OYSm-4DTg4MeYHIRwCKnUq_VpMqVgu2A_Tcn64J-rluIRnmA2I8Q0Aekh-0focUyPEPDOhDSnANnEGa9ppgCu1rHbmWzT01Lt3RLwvzIgtjL9-p8Rwhk6GUwocP72nqL7q8u7ixty--v658WPW-Ia0c7EqcEw2G4bK5mi4KzbMiNcK5yyVIgObC8oDJIBUKkG0UohbM_aYTBWccObU_R1zd3n9OcAZdYP6ZBjrdRcMNo2QjSyUnylXE6lZBj0PvvJ5EUzqo_L6HUZXZfRr8vorkrNKpUKxxHy_-h3rBfm3phA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Motamedi, Elaheh</creator><creator>Sadeghian Motahar, Seyedeh Fatemeh</creator><creator>Maleki, Morteza</creator><creator>Kavousi, Kaveh</creator><creator>Ariaeenejad, Shohreh</creator><creator>Moosavi-Movahedi, Ali A.</creator><creator>Hosseini Salekdeh, Ghasem</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6385-5098</orcidid></search><sort><creationdate>20210401</creationdate><title>Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel</title><author>Motamedi, Elaheh ; Sadeghian Motahar, Seyedeh Fatemeh ; Maleki, Morteza ; Kavousi, Kaveh ; Ariaeenejad, Shohreh ; Moosavi-Movahedi, Ali A. ; Hosseini Salekdeh, Ghasem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c9fa1e443b7190ecbc41a5c65c9b0558ebd50ef71ee079f56755bd16ffab92a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomass</topic><topic>Bioorganic Chemistry</topic><topic>Carboxymethyl cellulose</topic><topic>Cellulase</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Enzymes</topic><topic>Free form</topic><topic>Glass</topic><topic>Hydrogels</topic><topic>Hydrolysis</topic><topic>Lignocellulose</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pretreatment</topic><topic>Storage stability</topic><topic>Sugar</topic><topic>Sustainable Development</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motamedi, Elaheh</creatorcontrib><creatorcontrib>Sadeghian Motahar, Seyedeh Fatemeh</creatorcontrib><creatorcontrib>Maleki, Morteza</creatorcontrib><creatorcontrib>Kavousi, Kaveh</creatorcontrib><creatorcontrib>Ariaeenejad, Shohreh</creatorcontrib><creatorcontrib>Moosavi-Movahedi, Ali A.</creatorcontrib><creatorcontrib>Hosseini Salekdeh, Ghasem</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motamedi, Elaheh</au><au>Sadeghian Motahar, Seyedeh Fatemeh</au><au>Maleki, Morteza</au><au>Kavousi, Kaveh</au><au>Ariaeenejad, Shohreh</au><au>Moosavi-Movahedi, Ali A.</au><au>Hosseini Salekdeh, Ghasem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>28</volume><issue>6</issue><spage>3485</spage><epage>3503</epage><pages>3485-3503</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Degradation of various types of lignocellulosic biomass that require harsh pretreatment and abnormal operating conditions often occur in presence of a large amount of salt. Therefore, identification and use of stable and halotolerant cellulases is essential for industrial lignocellulose applications under extreme pH and temperature. This study focuses on discovering a novel thermostable and halotolerant cellulase from rumen microbiota by employing a multi-stage in-silico screening pipeline. According to this cost-effective strategy, the new PersiCel3 was cloned, expressed, purified, and characterized. The enzyme demonstrated suitable thermal and storage stability. To improve the thermal stability and halotolerance of the enzyme, it was immobilized on the CMC-based hydrogel. The maximum activity of the PersiCel3 could be seen in the concentration of 3 M NaCl for both free (132.46%) and immobilized (197.47%) enzyme. Applying both the free and immobilized PersiCel3 on degrading the rice straw in saline condition leads to an increment in generating the reducing sugars. The immobilized enzyme presented a significant enhancement in the hydrolysis of rice straw in saline conditions compared to its free form. Our results demonstrated the potential of the robust PersiCel3 in the harsh condition and the superb performance of the immobilized enzyme for the lignocellulosic biomass industries to increase the yield of value-added products in high temperatures and saline conditions.
Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-021-03727-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6385-5098</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2021-04, Vol.28 (6), p.3485-3503 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2510635537 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biomass Bioorganic Chemistry Carboxymethyl cellulose Cellulase Ceramics Chemistry Chemistry and Materials Science Composites Enzymes Free form Glass Hydrogels Hydrolysis Lignocellulose Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences Pretreatment Storage stability Sugar Sustainable Development Thermal stability |
title | Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upgrading%20the%20enzymatic%20hydrolysis%20of%20lignocellulosic%20biomass%20by%20immobilization%20of%20metagenome-derived%20novel%20halotolerant%20cellulase%20on%20the%20carboxymethyl%20cellulose-based%20hydrogel&rft.jtitle=Cellulose%20(London)&rft.au=Motamedi,%20Elaheh&rft.date=2021-04-01&rft.volume=28&rft.issue=6&rft.spage=3485&rft.epage=3503&rft.pages=3485-3503&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-021-03727-8&rft_dat=%3Cproquest_cross%3E2510635537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510635537&rft_id=info:pmid/&rfr_iscdi=true |