Algebraic realization of actions of some finite groups

Let G be A 5 , A 4 , or a finite group with cyclic Sylow 2 subgroup. We show that every closed smooth G manifold M has a strongly algebraic model. This means, there exist a nonsingular real algebraic G variety X which is equivariantly diffeomorphic to M and all G vector bundles over X are strongly a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2021-05, Vol.165 (1-2), p.239-254
Hauptverfasser: Dovermann, Karl Heinz, Flores, Daniel J., Giambalvo, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 1-2
container_start_page 239
container_title Manuscripta mathematica
container_volume 165
creator Dovermann, Karl Heinz
Flores, Daniel J.
Giambalvo, Vincent
description Let G be A 5 , A 4 , or a finite group with cyclic Sylow 2 subgroup. We show that every closed smooth G manifold M has a strongly algebraic model. This means, there exist a nonsingular real algebraic G variety X which is equivariantly diffeomorphic to M and all G vector bundles over X are strongly algebraic. Making use of improved blow-up techniques and the literature on equivariant bordism theory, we are extending older algebraic realization results.
doi_str_mv 10.1007/s00229-020-01208-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510606506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510606506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f579ee453cd7774eabb914130ed0696e928c2af9942346b3ae7726281810d5d83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMskk2x1L8goIXPYfs7mzZ0m5qsj3YX2_qCt48zQvvx8DD2C3CPQKYhwQghOUggAMKqPjxjM2wlIKjqdQ5m2VfcaERL9lVShuAbBo5Y3qxXVMdfd8Ukfy2P_qxD0MRusI3J5VOMoUdFV0_9CMV6xgO-3TNLjq_TXTze-fs4-nxffnCV2_Pr8vFijcS7cg7ZSxRqWTTGmNK8nVtsUQJ1IK2mqyoGuE7a0shS11LT8YILSqsEFrVVnLO7qbdfQyfB0qj24RDHPJLJxSCBq1A55SYUk0MKUXq3D72Ox-_HII78XETH5f5uB8-7phLciqlHB7WFP-m_2l9A6smZyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510606506</pqid></control><display><type>article</type><title>Algebraic realization of actions of some finite groups</title><source>SpringerNature Journals</source><creator>Dovermann, Karl Heinz ; Flores, Daniel J. ; Giambalvo, Vincent</creator><creatorcontrib>Dovermann, Karl Heinz ; Flores, Daniel J. ; Giambalvo, Vincent</creatorcontrib><description>Let G be A 5 , A 4 , or a finite group with cyclic Sylow 2 subgroup. We show that every closed smooth G manifold M has a strongly algebraic model. This means, there exist a nonsingular real algebraic G variety X which is equivariantly diffeomorphic to M and all G vector bundles over X are strongly algebraic. Making use of improved blow-up techniques and the literature on equivariant bordism theory, we are extending older algebraic realization results.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-020-01208-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Subgroups ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2021-05, Vol.165 (1-2), p.239-254</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f579ee453cd7774eabb914130ed0696e928c2af9942346b3ae7726281810d5d83</citedby><cites>FETCH-LOGICAL-c319t-f579ee453cd7774eabb914130ed0696e928c2af9942346b3ae7726281810d5d83</cites><orcidid>0000-0002-8533-7643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-020-01208-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-020-01208-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dovermann, Karl Heinz</creatorcontrib><creatorcontrib>Flores, Daniel J.</creatorcontrib><creatorcontrib>Giambalvo, Vincent</creatorcontrib><title>Algebraic realization of actions of some finite groups</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>Let G be A 5 , A 4 , or a finite group with cyclic Sylow 2 subgroup. We show that every closed smooth G manifold M has a strongly algebraic model. This means, there exist a nonsingular real algebraic G variety X which is equivariantly diffeomorphic to M and all G vector bundles over X are strongly algebraic. Making use of improved blow-up techniques and the literature on equivariant bordism theory, we are extending older algebraic realization results.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Subgroups</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMskk2x1L8goIXPYfs7mzZ0m5qsj3YX2_qCt48zQvvx8DD2C3CPQKYhwQghOUggAMKqPjxjM2wlIKjqdQ5m2VfcaERL9lVShuAbBo5Y3qxXVMdfd8Ukfy2P_qxD0MRusI3J5VOMoUdFV0_9CMV6xgO-3TNLjq_TXTze-fs4-nxffnCV2_Pr8vFijcS7cg7ZSxRqWTTGmNK8nVtsUQJ1IK2mqyoGuE7a0shS11LT8YILSqsEFrVVnLO7qbdfQyfB0qj24RDHPJLJxSCBq1A55SYUk0MKUXq3D72Ox-_HII78XETH5f5uB8-7phLciqlHB7WFP-m_2l9A6smZyI</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Dovermann, Karl Heinz</creator><creator>Flores, Daniel J.</creator><creator>Giambalvo, Vincent</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8533-7643</orcidid></search><sort><creationdate>20210501</creationdate><title>Algebraic realization of actions of some finite groups</title><author>Dovermann, Karl Heinz ; Flores, Daniel J. ; Giambalvo, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f579ee453cd7774eabb914130ed0696e928c2af9942346b3ae7726281810d5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Subgroups</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dovermann, Karl Heinz</creatorcontrib><creatorcontrib>Flores, Daniel J.</creatorcontrib><creatorcontrib>Giambalvo, Vincent</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dovermann, Karl Heinz</au><au>Flores, Daniel J.</au><au>Giambalvo, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic realization of actions of some finite groups</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>165</volume><issue>1-2</issue><spage>239</spage><epage>254</epage><pages>239-254</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>Let G be A 5 , A 4 , or a finite group with cyclic Sylow 2 subgroup. We show that every closed smooth G manifold M has a strongly algebraic model. This means, there exist a nonsingular real algebraic G variety X which is equivariantly diffeomorphic to M and all G vector bundles over X are strongly algebraic. Making use of improved blow-up techniques and the literature on equivariant bordism theory, we are extending older algebraic realization results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-020-01208-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8533-7643</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2021-05, Vol.165 (1-2), p.239-254
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2510606506
source SpringerNature Journals
subjects Algebra
Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Geometry
Lie Groups
Mathematics
Mathematics and Statistics
Number Theory
Subgroups
Topological Groups
title Algebraic realization of actions of some finite groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20realization%20of%20actions%20of%20some%20finite%20groups&rft.jtitle=Manuscripta%20mathematica&rft.au=Dovermann,%20Karl%20Heinz&rft.date=2021-05-01&rft.volume=165&rft.issue=1-2&rft.spage=239&rft.epage=254&rft.pages=239-254&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-020-01208-z&rft_dat=%3Cproquest_cross%3E2510606506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510606506&rft_id=info:pmid/&rfr_iscdi=true