Algebraic realization of actions of some finite groups
Let G be A 5 , A 4 , or a finite group with cyclic Sylow 2 subgroup. We show that every closed smooth G manifold M has a strongly algebraic model. This means, there exist a nonsingular real algebraic G variety X which is equivariantly diffeomorphic to M and all G vector bundles over X are strongly a...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2021-05, Vol.165 (1-2), p.239-254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 1-2 |
container_start_page | 239 |
container_title | Manuscripta mathematica |
container_volume | 165 |
creator | Dovermann, Karl Heinz Flores, Daniel J. Giambalvo, Vincent |
description | Let
G
be
A
5
,
A
4
, or a finite group with cyclic Sylow 2 subgroup. We show that every closed smooth
G
manifold
M
has a strongly algebraic model. This means, there exist a nonsingular real algebraic
G
variety
X
which is equivariantly diffeomorphic to
M
and all
G
vector bundles over
X
are strongly algebraic. Making use of improved blow-up techniques and the literature on equivariant bordism theory, we are extending older algebraic realization results. |
doi_str_mv | 10.1007/s00229-020-01208-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510606506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510606506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f579ee453cd7774eabb914130ed0696e928c2af9942346b3ae7726281810d5d83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMskk2x1L8goIXPYfs7mzZ0m5qsj3YX2_qCt48zQvvx8DD2C3CPQKYhwQghOUggAMKqPjxjM2wlIKjqdQ5m2VfcaERL9lVShuAbBo5Y3qxXVMdfd8Ukfy2P_qxD0MRusI3J5VOMoUdFV0_9CMV6xgO-3TNLjq_TXTze-fs4-nxffnCV2_Pr8vFijcS7cg7ZSxRqWTTGmNK8nVtsUQJ1IK2mqyoGuE7a0shS11LT8YILSqsEFrVVnLO7qbdfQyfB0qj24RDHPJLJxSCBq1A55SYUk0MKUXq3D72Ox-_HII78XETH5f5uB8-7phLciqlHB7WFP-m_2l9A6smZyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510606506</pqid></control><display><type>article</type><title>Algebraic realization of actions of some finite groups</title><source>SpringerNature Journals</source><creator>Dovermann, Karl Heinz ; Flores, Daniel J. ; Giambalvo, Vincent</creator><creatorcontrib>Dovermann, Karl Heinz ; Flores, Daniel J. ; Giambalvo, Vincent</creatorcontrib><description>Let
G
be
A
5
,
A
4
, or a finite group with cyclic Sylow 2 subgroup. We show that every closed smooth
G
manifold
M
has a strongly algebraic model. This means, there exist a nonsingular real algebraic
G
variety
X
which is equivariantly diffeomorphic to
M
and all
G
vector bundles over
X
are strongly algebraic. Making use of improved blow-up techniques and the literature on equivariant bordism theory, we are extending older algebraic realization results.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-020-01208-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Subgroups ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2021-05, Vol.165 (1-2), p.239-254</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f579ee453cd7774eabb914130ed0696e928c2af9942346b3ae7726281810d5d83</citedby><cites>FETCH-LOGICAL-c319t-f579ee453cd7774eabb914130ed0696e928c2af9942346b3ae7726281810d5d83</cites><orcidid>0000-0002-8533-7643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-020-01208-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-020-01208-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dovermann, Karl Heinz</creatorcontrib><creatorcontrib>Flores, Daniel J.</creatorcontrib><creatorcontrib>Giambalvo, Vincent</creatorcontrib><title>Algebraic realization of actions of some finite groups</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>Let
G
be
A
5
,
A
4
, or a finite group with cyclic Sylow 2 subgroup. We show that every closed smooth
G
manifold
M
has a strongly algebraic model. This means, there exist a nonsingular real algebraic
G
variety
X
which is equivariantly diffeomorphic to
M
and all
G
vector bundles over
X
are strongly algebraic. Making use of improved blow-up techniques and the literature on equivariant bordism theory, we are extending older algebraic realization results.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Subgroups</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMskk2x1L8goIXPYfs7mzZ0m5qsj3YX2_qCt48zQvvx8DD2C3CPQKYhwQghOUggAMKqPjxjM2wlIKjqdQ5m2VfcaERL9lVShuAbBo5Y3qxXVMdfd8Ukfy2P_qxD0MRusI3J5VOMoUdFV0_9CMV6xgO-3TNLjq_TXTze-fs4-nxffnCV2_Pr8vFijcS7cg7ZSxRqWTTGmNK8nVtsUQJ1IK2mqyoGuE7a0shS11LT8YILSqsEFrVVnLO7qbdfQyfB0qj24RDHPJLJxSCBq1A55SYUk0MKUXq3D72Ox-_HII78XETH5f5uB8-7phLciqlHB7WFP-m_2l9A6smZyI</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Dovermann, Karl Heinz</creator><creator>Flores, Daniel J.</creator><creator>Giambalvo, Vincent</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8533-7643</orcidid></search><sort><creationdate>20210501</creationdate><title>Algebraic realization of actions of some finite groups</title><author>Dovermann, Karl Heinz ; Flores, Daniel J. ; Giambalvo, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f579ee453cd7774eabb914130ed0696e928c2af9942346b3ae7726281810d5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Subgroups</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dovermann, Karl Heinz</creatorcontrib><creatorcontrib>Flores, Daniel J.</creatorcontrib><creatorcontrib>Giambalvo, Vincent</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dovermann, Karl Heinz</au><au>Flores, Daniel J.</au><au>Giambalvo, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic realization of actions of some finite groups</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>165</volume><issue>1-2</issue><spage>239</spage><epage>254</epage><pages>239-254</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>Let
G
be
A
5
,
A
4
, or a finite group with cyclic Sylow 2 subgroup. We show that every closed smooth
G
manifold
M
has a strongly algebraic model. This means, there exist a nonsingular real algebraic
G
variety
X
which is equivariantly diffeomorphic to
M
and all
G
vector bundles over
X
are strongly algebraic. Making use of improved blow-up techniques and the literature on equivariant bordism theory, we are extending older algebraic realization results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-020-01208-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8533-7643</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2021-05, Vol.165 (1-2), p.239-254 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_proquest_journals_2510606506 |
source | SpringerNature Journals |
subjects | Algebra Algebraic Geometry Calculus of Variations and Optimal Control Optimization Geometry Lie Groups Mathematics Mathematics and Statistics Number Theory Subgroups Topological Groups |
title | Algebraic realization of actions of some finite groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20realization%20of%20actions%20of%20some%20finite%20groups&rft.jtitle=Manuscripta%20mathematica&rft.au=Dovermann,%20Karl%20Heinz&rft.date=2021-05-01&rft.volume=165&rft.issue=1-2&rft.spage=239&rft.epage=254&rft.pages=239-254&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-020-01208-z&rft_dat=%3Cproquest_cross%3E2510606506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510606506&rft_id=info:pmid/&rfr_iscdi=true |