Recent advances in MXene-based nanocomposites for electrochemical energy storage applications
•Development of MXene nanocomposites is an effective way to improve the properties of MXene for various applications.•Research on MXene nanocomposite has been emerging.•Recent advances in synthesis methods and properties of MXene nanocomposites have been updated.•Electrochemical applications and for...
Gespeichert in:
Veröffentlicht in: | Progress in materials science 2021-04, Vol.117, p.100733, Article 100733 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 100733 |
container_title | Progress in materials science |
container_volume | 117 |
creator | Kshetri, Tolendra Tran, Duy Thanh Le, Huu Tuan Nguyen, Dinh Chuong Hoa, Hien Van Kim, Nam Hoon Lee, Joong Hee |
description | •Development of MXene nanocomposites is an effective way to improve the properties of MXene for various applications.•Research on MXene nanocomposite has been emerging.•Recent advances in synthesis methods and properties of MXene nanocomposites have been updated.•Electrochemical applications and forthcoming opportunities of MXene nanocomposites have been discussed.
Since the first exfoliation of a few atomic layers of transition metal carbides (Ti3C2) from the three-dimensional (3D) MAX phase (Ti3AlC2) in 2011, a family of two-dimensional (2D) layered metal carbides and nitrides also known as MXene has drawn great attention as a promising 2D material in various applications. The hydrophilic nature, excellent conductivity and electrochemical properties make MXene a fascinating 2D candidate for electrochemical energy storage applications. However, the aggregation, restacking, and oxidation of MXene nanosheets (NSs) significantly hinder their performance. To address these issues, an effective and straightforward strategy is to combine MXene with other materials including polymers, metal oxides, and carbon to form MXene nanocomposites. Making MXene nanocomposites with other materials is an effective way to tune the properties of MXene for many applications. In the current research trend, the most important application of MXene-based nanocomposite is electrochemical energy storage due to the improved electrochemical and physicochemical properties. Therefore, this review presents the current advances in MXene nanocomposites, especially for electrochemical energy storage applications. |
doi_str_mv | 10.1016/j.pmatsci.2020.100733 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510603817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079642520300979</els_id><sourcerecordid>2510603817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-59c481d2c356bea75440b209534a7dd9ad31b8964e20d4e1f547f4ca2830874d3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKs_QQj4vDXXvTyJFG9QEUTBFwnZZLZm2d2sybbQf29K--7TMGfOmWE-hK4pWVBC89t2MfZ6isYtGGF7jRScn6AZLQueMUbKUzRLWpXlgslzdBFjS1JPSTVD3-9gYJiwtls9GIjYDfj1CwbIah3B4kEP3vh-9NFNadr4gKEDMwVvfqB3Rnc4mcN6h-Pkg14D1uPYJX1yfoiX6KzRXYSrY52jz8eHj-Vztnp7elnerzLDeTFlsjKipJYZLvMadCGFIDUjleRCF9ZW2nJal1UugBErgDZSFI0wmpWclIWwfI5uDnvH4H83ECfV-k0Y0knFJCU54SUtkkseXCb4GAM0agyu12GnKFF7kqpVR5JqT1IdSKbc3SEH6YWtg6CSAxIt60JCoax3_2z4A4ACf58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510603817</pqid></control><display><type>article</type><title>Recent advances in MXene-based nanocomposites for electrochemical energy storage applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kshetri, Tolendra ; Tran, Duy Thanh ; Le, Huu Tuan ; Nguyen, Dinh Chuong ; Hoa, Hien Van ; Kim, Nam Hoon ; Lee, Joong Hee</creator><creatorcontrib>Kshetri, Tolendra ; Tran, Duy Thanh ; Le, Huu Tuan ; Nguyen, Dinh Chuong ; Hoa, Hien Van ; Kim, Nam Hoon ; Lee, Joong Hee</creatorcontrib><description>•Development of MXene nanocomposites is an effective way to improve the properties of MXene for various applications.•Research on MXene nanocomposite has been emerging.•Recent advances in synthesis methods and properties of MXene nanocomposites have been updated.•Electrochemical applications and forthcoming opportunities of MXene nanocomposites have been discussed.
Since the first exfoliation of a few atomic layers of transition metal carbides (Ti3C2) from the three-dimensional (3D) MAX phase (Ti3AlC2) in 2011, a family of two-dimensional (2D) layered metal carbides and nitrides also known as MXene has drawn great attention as a promising 2D material in various applications. The hydrophilic nature, excellent conductivity and electrochemical properties make MXene a fascinating 2D candidate for electrochemical energy storage applications. However, the aggregation, restacking, and oxidation of MXene nanosheets (NSs) significantly hinder their performance. To address these issues, an effective and straightforward strategy is to combine MXene with other materials including polymers, metal oxides, and carbon to form MXene nanocomposites. Making MXene nanocomposites with other materials is an effective way to tune the properties of MXene for many applications. In the current research trend, the most important application of MXene-based nanocomposite is electrochemical energy storage due to the improved electrochemical and physicochemical properties. Therefore, this review presents the current advances in MXene nanocomposites, especially for electrochemical energy storage applications.</description><identifier>ISSN: 0079-6425</identifier><identifier>EISSN: 1873-2208</identifier><identifier>DOI: 10.1016/j.pmatsci.2020.100733</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Electrochemical analysis ; Electrochemical energy applications ; Energy storage ; Materials science ; Metal carbides ; Metal oxides ; MXenes ; Nanocomposites ; Oxidation ; Supercapacitors ; Transition metals ; Two dimensional materials ; Two-dimensional MXene materials</subject><ispartof>Progress in materials science, 2021-04, Vol.117, p.100733, Article 100733</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-59c481d2c356bea75440b209534a7dd9ad31b8964e20d4e1f547f4ca2830874d3</citedby><cites>FETCH-LOGICAL-c337t-59c481d2c356bea75440b209534a7dd9ad31b8964e20d4e1f547f4ca2830874d3</cites><orcidid>0000-0003-0077-9993 ; 0000-0001-9281-0489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079642520300979$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kshetri, Tolendra</creatorcontrib><creatorcontrib>Tran, Duy Thanh</creatorcontrib><creatorcontrib>Le, Huu Tuan</creatorcontrib><creatorcontrib>Nguyen, Dinh Chuong</creatorcontrib><creatorcontrib>Hoa, Hien Van</creatorcontrib><creatorcontrib>Kim, Nam Hoon</creatorcontrib><creatorcontrib>Lee, Joong Hee</creatorcontrib><title>Recent advances in MXene-based nanocomposites for electrochemical energy storage applications</title><title>Progress in materials science</title><description>•Development of MXene nanocomposites is an effective way to improve the properties of MXene for various applications.•Research on MXene nanocomposite has been emerging.•Recent advances in synthesis methods and properties of MXene nanocomposites have been updated.•Electrochemical applications and forthcoming opportunities of MXene nanocomposites have been discussed.
Since the first exfoliation of a few atomic layers of transition metal carbides (Ti3C2) from the three-dimensional (3D) MAX phase (Ti3AlC2) in 2011, a family of two-dimensional (2D) layered metal carbides and nitrides also known as MXene has drawn great attention as a promising 2D material in various applications. The hydrophilic nature, excellent conductivity and electrochemical properties make MXene a fascinating 2D candidate for electrochemical energy storage applications. However, the aggregation, restacking, and oxidation of MXene nanosheets (NSs) significantly hinder their performance. To address these issues, an effective and straightforward strategy is to combine MXene with other materials including polymers, metal oxides, and carbon to form MXene nanocomposites. Making MXene nanocomposites with other materials is an effective way to tune the properties of MXene for many applications. In the current research trend, the most important application of MXene-based nanocomposite is electrochemical energy storage due to the improved electrochemical and physicochemical properties. Therefore, this review presents the current advances in MXene nanocomposites, especially for electrochemical energy storage applications.</description><subject>Batteries</subject><subject>Electrochemical analysis</subject><subject>Electrochemical energy applications</subject><subject>Energy storage</subject><subject>Materials science</subject><subject>Metal carbides</subject><subject>Metal oxides</subject><subject>MXenes</subject><subject>Nanocomposites</subject><subject>Oxidation</subject><subject>Supercapacitors</subject><subject>Transition metals</subject><subject>Two dimensional materials</subject><subject>Two-dimensional MXene materials</subject><issn>0079-6425</issn><issn>1873-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKs_QQj4vDXXvTyJFG9QEUTBFwnZZLZm2d2sybbQf29K--7TMGfOmWE-hK4pWVBC89t2MfZ6isYtGGF7jRScn6AZLQueMUbKUzRLWpXlgslzdBFjS1JPSTVD3-9gYJiwtls9GIjYDfj1CwbIah3B4kEP3vh-9NFNadr4gKEDMwVvfqB3Rnc4mcN6h-Pkg14D1uPYJX1yfoiX6KzRXYSrY52jz8eHj-Vztnp7elnerzLDeTFlsjKipJYZLvMadCGFIDUjleRCF9ZW2nJal1UugBErgDZSFI0wmpWclIWwfI5uDnvH4H83ECfV-k0Y0knFJCU54SUtkkseXCb4GAM0agyu12GnKFF7kqpVR5JqT1IdSKbc3SEH6YWtg6CSAxIt60JCoax3_2z4A4ACf58</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Kshetri, Tolendra</creator><creator>Tran, Duy Thanh</creator><creator>Le, Huu Tuan</creator><creator>Nguyen, Dinh Chuong</creator><creator>Hoa, Hien Van</creator><creator>Kim, Nam Hoon</creator><creator>Lee, Joong Hee</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0077-9993</orcidid><orcidid>https://orcid.org/0000-0001-9281-0489</orcidid></search><sort><creationdate>202104</creationdate><title>Recent advances in MXene-based nanocomposites for electrochemical energy storage applications</title><author>Kshetri, Tolendra ; Tran, Duy Thanh ; Le, Huu Tuan ; Nguyen, Dinh Chuong ; Hoa, Hien Van ; Kim, Nam Hoon ; Lee, Joong Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-59c481d2c356bea75440b209534a7dd9ad31b8964e20d4e1f547f4ca2830874d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Electrochemical analysis</topic><topic>Electrochemical energy applications</topic><topic>Energy storage</topic><topic>Materials science</topic><topic>Metal carbides</topic><topic>Metal oxides</topic><topic>MXenes</topic><topic>Nanocomposites</topic><topic>Oxidation</topic><topic>Supercapacitors</topic><topic>Transition metals</topic><topic>Two dimensional materials</topic><topic>Two-dimensional MXene materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kshetri, Tolendra</creatorcontrib><creatorcontrib>Tran, Duy Thanh</creatorcontrib><creatorcontrib>Le, Huu Tuan</creatorcontrib><creatorcontrib>Nguyen, Dinh Chuong</creatorcontrib><creatorcontrib>Hoa, Hien Van</creatorcontrib><creatorcontrib>Kim, Nam Hoon</creatorcontrib><creatorcontrib>Lee, Joong Hee</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Progress in materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kshetri, Tolendra</au><au>Tran, Duy Thanh</au><au>Le, Huu Tuan</au><au>Nguyen, Dinh Chuong</au><au>Hoa, Hien Van</au><au>Kim, Nam Hoon</au><au>Lee, Joong Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in MXene-based nanocomposites for electrochemical energy storage applications</atitle><jtitle>Progress in materials science</jtitle><date>2021-04</date><risdate>2021</risdate><volume>117</volume><spage>100733</spage><pages>100733-</pages><artnum>100733</artnum><issn>0079-6425</issn><eissn>1873-2208</eissn><abstract>•Development of MXene nanocomposites is an effective way to improve the properties of MXene for various applications.•Research on MXene nanocomposite has been emerging.•Recent advances in synthesis methods and properties of MXene nanocomposites have been updated.•Electrochemical applications and forthcoming opportunities of MXene nanocomposites have been discussed.
Since the first exfoliation of a few atomic layers of transition metal carbides (Ti3C2) from the three-dimensional (3D) MAX phase (Ti3AlC2) in 2011, a family of two-dimensional (2D) layered metal carbides and nitrides also known as MXene has drawn great attention as a promising 2D material in various applications. The hydrophilic nature, excellent conductivity and electrochemical properties make MXene a fascinating 2D candidate for electrochemical energy storage applications. However, the aggregation, restacking, and oxidation of MXene nanosheets (NSs) significantly hinder their performance. To address these issues, an effective and straightforward strategy is to combine MXene with other materials including polymers, metal oxides, and carbon to form MXene nanocomposites. Making MXene nanocomposites with other materials is an effective way to tune the properties of MXene for many applications. In the current research trend, the most important application of MXene-based nanocomposite is electrochemical energy storage due to the improved electrochemical and physicochemical properties. Therefore, this review presents the current advances in MXene nanocomposites, especially for electrochemical energy storage applications.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.pmatsci.2020.100733</doi><orcidid>https://orcid.org/0000-0003-0077-9993</orcidid><orcidid>https://orcid.org/0000-0001-9281-0489</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6425 |
ispartof | Progress in materials science, 2021-04, Vol.117, p.100733, Article 100733 |
issn | 0079-6425 1873-2208 |
language | eng |
recordid | cdi_proquest_journals_2510603817 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Batteries Electrochemical analysis Electrochemical energy applications Energy storage Materials science Metal carbides Metal oxides MXenes Nanocomposites Oxidation Supercapacitors Transition metals Two dimensional materials Two-dimensional MXene materials |
title | Recent advances in MXene-based nanocomposites for electrochemical energy storage applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20MXene-based%20nanocomposites%20for%20electrochemical%20energy%20storage%20applications&rft.jtitle=Progress%20in%20materials%20science&rft.au=Kshetri,%20Tolendra&rft.date=2021-04&rft.volume=117&rft.spage=100733&rft.pages=100733-&rft.artnum=100733&rft.issn=0079-6425&rft.eissn=1873-2208&rft_id=info:doi/10.1016/j.pmatsci.2020.100733&rft_dat=%3Cproquest_cross%3E2510603817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510603817&rft_id=info:pmid/&rft_els_id=S0079642520300979&rfr_iscdi=true |