Recent advances in MXene-based nanocomposites for electrochemical energy storage applications

•Development of MXene nanocomposites is an effective way to improve the properties of MXene for various applications.•Research on MXene nanocomposite has been emerging.•Recent advances in synthesis methods and properties of MXene nanocomposites have been updated.•Electrochemical applications and for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in materials science 2021-04, Vol.117, p.100733, Article 100733
Hauptverfasser: Kshetri, Tolendra, Tran, Duy Thanh, Le, Huu Tuan, Nguyen, Dinh Chuong, Hoa, Hien Van, Kim, Nam Hoon, Lee, Joong Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 100733
container_title Progress in materials science
container_volume 117
creator Kshetri, Tolendra
Tran, Duy Thanh
Le, Huu Tuan
Nguyen, Dinh Chuong
Hoa, Hien Van
Kim, Nam Hoon
Lee, Joong Hee
description •Development of MXene nanocomposites is an effective way to improve the properties of MXene for various applications.•Research on MXene nanocomposite has been emerging.•Recent advances in synthesis methods and properties of MXene nanocomposites have been updated.•Electrochemical applications and forthcoming opportunities of MXene nanocomposites have been discussed. Since the first exfoliation of a few atomic layers of transition metal carbides (Ti3C2) from the three-dimensional (3D) MAX phase (Ti3AlC2) in 2011, a family of two-dimensional (2D) layered metal carbides and nitrides also known as MXene has drawn great attention as a promising 2D material in various applications. The hydrophilic nature, excellent conductivity and electrochemical properties make MXene a fascinating 2D candidate for electrochemical energy storage applications. However, the aggregation, restacking, and oxidation of MXene nanosheets (NSs) significantly hinder their performance. To address these issues, an effective and straightforward strategy is to combine MXene with other materials including polymers, metal oxides, and carbon to form MXene nanocomposites. Making MXene nanocomposites with other materials is an effective way to tune the properties of MXene for many applications. In the current research trend, the most important application of MXene-based nanocomposite is electrochemical energy storage due to the improved electrochemical and physicochemical properties. Therefore, this review presents the current advances in MXene nanocomposites, especially for electrochemical energy storage applications.
doi_str_mv 10.1016/j.pmatsci.2020.100733
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510603817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079642520300979</els_id><sourcerecordid>2510603817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-59c481d2c356bea75440b209534a7dd9ad31b8964e20d4e1f547f4ca2830874d3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKs_QQj4vDXXvTyJFG9QEUTBFwnZZLZm2d2sybbQf29K--7TMGfOmWE-hK4pWVBC89t2MfZ6isYtGGF7jRScn6AZLQueMUbKUzRLWpXlgslzdBFjS1JPSTVD3-9gYJiwtls9GIjYDfj1CwbIah3B4kEP3vh-9NFNadr4gKEDMwVvfqB3Rnc4mcN6h-Pkg14D1uPYJX1yfoiX6KzRXYSrY52jz8eHj-Vztnp7elnerzLDeTFlsjKipJYZLvMadCGFIDUjleRCF9ZW2nJal1UugBErgDZSFI0wmpWclIWwfI5uDnvH4H83ECfV-k0Y0knFJCU54SUtkkseXCb4GAM0agyu12GnKFF7kqpVR5JqT1IdSKbc3SEH6YWtg6CSAxIt60JCoax3_2z4A4ACf58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510603817</pqid></control><display><type>article</type><title>Recent advances in MXene-based nanocomposites for electrochemical energy storage applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kshetri, Tolendra ; Tran, Duy Thanh ; Le, Huu Tuan ; Nguyen, Dinh Chuong ; Hoa, Hien Van ; Kim, Nam Hoon ; Lee, Joong Hee</creator><creatorcontrib>Kshetri, Tolendra ; Tran, Duy Thanh ; Le, Huu Tuan ; Nguyen, Dinh Chuong ; Hoa, Hien Van ; Kim, Nam Hoon ; Lee, Joong Hee</creatorcontrib><description>•Development of MXene nanocomposites is an effective way to improve the properties of MXene for various applications.•Research on MXene nanocomposite has been emerging.•Recent advances in synthesis methods and properties of MXene nanocomposites have been updated.•Electrochemical applications and forthcoming opportunities of MXene nanocomposites have been discussed. Since the first exfoliation of a few atomic layers of transition metal carbides (Ti3C2) from the three-dimensional (3D) MAX phase (Ti3AlC2) in 2011, a family of two-dimensional (2D) layered metal carbides and nitrides also known as MXene has drawn great attention as a promising 2D material in various applications. The hydrophilic nature, excellent conductivity and electrochemical properties make MXene a fascinating 2D candidate for electrochemical energy storage applications. However, the aggregation, restacking, and oxidation of MXene nanosheets (NSs) significantly hinder their performance. To address these issues, an effective and straightforward strategy is to combine MXene with other materials including polymers, metal oxides, and carbon to form MXene nanocomposites. Making MXene nanocomposites with other materials is an effective way to tune the properties of MXene for many applications. In the current research trend, the most important application of MXene-based nanocomposite is electrochemical energy storage due to the improved electrochemical and physicochemical properties. Therefore, this review presents the current advances in MXene nanocomposites, especially for electrochemical energy storage applications.</description><identifier>ISSN: 0079-6425</identifier><identifier>EISSN: 1873-2208</identifier><identifier>DOI: 10.1016/j.pmatsci.2020.100733</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Electrochemical analysis ; Electrochemical energy applications ; Energy storage ; Materials science ; Metal carbides ; Metal oxides ; MXenes ; Nanocomposites ; Oxidation ; Supercapacitors ; Transition metals ; Two dimensional materials ; Two-dimensional MXene materials</subject><ispartof>Progress in materials science, 2021-04, Vol.117, p.100733, Article 100733</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-59c481d2c356bea75440b209534a7dd9ad31b8964e20d4e1f547f4ca2830874d3</citedby><cites>FETCH-LOGICAL-c337t-59c481d2c356bea75440b209534a7dd9ad31b8964e20d4e1f547f4ca2830874d3</cites><orcidid>0000-0003-0077-9993 ; 0000-0001-9281-0489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079642520300979$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kshetri, Tolendra</creatorcontrib><creatorcontrib>Tran, Duy Thanh</creatorcontrib><creatorcontrib>Le, Huu Tuan</creatorcontrib><creatorcontrib>Nguyen, Dinh Chuong</creatorcontrib><creatorcontrib>Hoa, Hien Van</creatorcontrib><creatorcontrib>Kim, Nam Hoon</creatorcontrib><creatorcontrib>Lee, Joong Hee</creatorcontrib><title>Recent advances in MXene-based nanocomposites for electrochemical energy storage applications</title><title>Progress in materials science</title><description>•Development of MXene nanocomposites is an effective way to improve the properties of MXene for various applications.•Research on MXene nanocomposite has been emerging.•Recent advances in synthesis methods and properties of MXene nanocomposites have been updated.•Electrochemical applications and forthcoming opportunities of MXene nanocomposites have been discussed. Since the first exfoliation of a few atomic layers of transition metal carbides (Ti3C2) from the three-dimensional (3D) MAX phase (Ti3AlC2) in 2011, a family of two-dimensional (2D) layered metal carbides and nitrides also known as MXene has drawn great attention as a promising 2D material in various applications. The hydrophilic nature, excellent conductivity and electrochemical properties make MXene a fascinating 2D candidate for electrochemical energy storage applications. However, the aggregation, restacking, and oxidation of MXene nanosheets (NSs) significantly hinder their performance. To address these issues, an effective and straightforward strategy is to combine MXene with other materials including polymers, metal oxides, and carbon to form MXene nanocomposites. Making MXene nanocomposites with other materials is an effective way to tune the properties of MXene for many applications. In the current research trend, the most important application of MXene-based nanocomposite is electrochemical energy storage due to the improved electrochemical and physicochemical properties. Therefore, this review presents the current advances in MXene nanocomposites, especially for electrochemical energy storage applications.</description><subject>Batteries</subject><subject>Electrochemical analysis</subject><subject>Electrochemical energy applications</subject><subject>Energy storage</subject><subject>Materials science</subject><subject>Metal carbides</subject><subject>Metal oxides</subject><subject>MXenes</subject><subject>Nanocomposites</subject><subject>Oxidation</subject><subject>Supercapacitors</subject><subject>Transition metals</subject><subject>Two dimensional materials</subject><subject>Two-dimensional MXene materials</subject><issn>0079-6425</issn><issn>1873-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKs_QQj4vDXXvTyJFG9QEUTBFwnZZLZm2d2sybbQf29K--7TMGfOmWE-hK4pWVBC89t2MfZ6isYtGGF7jRScn6AZLQueMUbKUzRLWpXlgslzdBFjS1JPSTVD3-9gYJiwtls9GIjYDfj1CwbIah3B4kEP3vh-9NFNadr4gKEDMwVvfqB3Rnc4mcN6h-Pkg14D1uPYJX1yfoiX6KzRXYSrY52jz8eHj-Vztnp7elnerzLDeTFlsjKipJYZLvMadCGFIDUjleRCF9ZW2nJal1UugBErgDZSFI0wmpWclIWwfI5uDnvH4H83ECfV-k0Y0knFJCU54SUtkkseXCb4GAM0agyu12GnKFF7kqpVR5JqT1IdSKbc3SEH6YWtg6CSAxIt60JCoax3_2z4A4ACf58</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Kshetri, Tolendra</creator><creator>Tran, Duy Thanh</creator><creator>Le, Huu Tuan</creator><creator>Nguyen, Dinh Chuong</creator><creator>Hoa, Hien Van</creator><creator>Kim, Nam Hoon</creator><creator>Lee, Joong Hee</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0077-9993</orcidid><orcidid>https://orcid.org/0000-0001-9281-0489</orcidid></search><sort><creationdate>202104</creationdate><title>Recent advances in MXene-based nanocomposites for electrochemical energy storage applications</title><author>Kshetri, Tolendra ; Tran, Duy Thanh ; Le, Huu Tuan ; Nguyen, Dinh Chuong ; Hoa, Hien Van ; Kim, Nam Hoon ; Lee, Joong Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-59c481d2c356bea75440b209534a7dd9ad31b8964e20d4e1f547f4ca2830874d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Electrochemical analysis</topic><topic>Electrochemical energy applications</topic><topic>Energy storage</topic><topic>Materials science</topic><topic>Metal carbides</topic><topic>Metal oxides</topic><topic>MXenes</topic><topic>Nanocomposites</topic><topic>Oxidation</topic><topic>Supercapacitors</topic><topic>Transition metals</topic><topic>Two dimensional materials</topic><topic>Two-dimensional MXene materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kshetri, Tolendra</creatorcontrib><creatorcontrib>Tran, Duy Thanh</creatorcontrib><creatorcontrib>Le, Huu Tuan</creatorcontrib><creatorcontrib>Nguyen, Dinh Chuong</creatorcontrib><creatorcontrib>Hoa, Hien Van</creatorcontrib><creatorcontrib>Kim, Nam Hoon</creatorcontrib><creatorcontrib>Lee, Joong Hee</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Progress in materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kshetri, Tolendra</au><au>Tran, Duy Thanh</au><au>Le, Huu Tuan</au><au>Nguyen, Dinh Chuong</au><au>Hoa, Hien Van</au><au>Kim, Nam Hoon</au><au>Lee, Joong Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in MXene-based nanocomposites for electrochemical energy storage applications</atitle><jtitle>Progress in materials science</jtitle><date>2021-04</date><risdate>2021</risdate><volume>117</volume><spage>100733</spage><pages>100733-</pages><artnum>100733</artnum><issn>0079-6425</issn><eissn>1873-2208</eissn><abstract>•Development of MXene nanocomposites is an effective way to improve the properties of MXene for various applications.•Research on MXene nanocomposite has been emerging.•Recent advances in synthesis methods and properties of MXene nanocomposites have been updated.•Electrochemical applications and forthcoming opportunities of MXene nanocomposites have been discussed. Since the first exfoliation of a few atomic layers of transition metal carbides (Ti3C2) from the three-dimensional (3D) MAX phase (Ti3AlC2) in 2011, a family of two-dimensional (2D) layered metal carbides and nitrides also known as MXene has drawn great attention as a promising 2D material in various applications. The hydrophilic nature, excellent conductivity and electrochemical properties make MXene a fascinating 2D candidate for electrochemical energy storage applications. However, the aggregation, restacking, and oxidation of MXene nanosheets (NSs) significantly hinder their performance. To address these issues, an effective and straightforward strategy is to combine MXene with other materials including polymers, metal oxides, and carbon to form MXene nanocomposites. Making MXene nanocomposites with other materials is an effective way to tune the properties of MXene for many applications. In the current research trend, the most important application of MXene-based nanocomposite is electrochemical energy storage due to the improved electrochemical and physicochemical properties. Therefore, this review presents the current advances in MXene nanocomposites, especially for electrochemical energy storage applications.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.pmatsci.2020.100733</doi><orcidid>https://orcid.org/0000-0003-0077-9993</orcidid><orcidid>https://orcid.org/0000-0001-9281-0489</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0079-6425
ispartof Progress in materials science, 2021-04, Vol.117, p.100733, Article 100733
issn 0079-6425
1873-2208
language eng
recordid cdi_proquest_journals_2510603817
source Elsevier ScienceDirect Journals Complete
subjects Batteries
Electrochemical analysis
Electrochemical energy applications
Energy storage
Materials science
Metal carbides
Metal oxides
MXenes
Nanocomposites
Oxidation
Supercapacitors
Transition metals
Two dimensional materials
Two-dimensional MXene materials
title Recent advances in MXene-based nanocomposites for electrochemical energy storage applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20MXene-based%20nanocomposites%20for%20electrochemical%20energy%20storage%20applications&rft.jtitle=Progress%20in%20materials%20science&rft.au=Kshetri,%20Tolendra&rft.date=2021-04&rft.volume=117&rft.spage=100733&rft.pages=100733-&rft.artnum=100733&rft.issn=0079-6425&rft.eissn=1873-2208&rft_id=info:doi/10.1016/j.pmatsci.2020.100733&rft_dat=%3Cproquest_cross%3E2510603817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510603817&rft_id=info:pmid/&rft_els_id=S0079642520300979&rfr_iscdi=true