Selecting frequency and parameters of DC-fault tolerant non-isolated high power MMC DC/DC converter
•Non-isolated MMC DC/DC converter (NIMDC) parameters design is proposed.•The design goals are set to power loss of 1.5%, and voltage ripple of around ±5%.•The NIMDC parameters affect each other in a highly non-linear way.•A DC fault analysis provides minimal NIMDC inductors size as initial design va...
Gespeichert in:
Veröffentlicht in: | Electric power systems research 2021-02, Vol.191, p.106896, Article 106896 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106896 |
container_title | Electric power systems research |
container_volume | 191 |
creator | Jamshidi Far, A. Jovcic, D. Nami, A. Okazaki, Y. |
description | •Non-isolated MMC DC/DC converter (NIMDC) parameters design is proposed.•The design goals are set to power loss of 1.5%, and voltage ripple of around ±5%.•The NIMDC parameters affect each other in a highly non-linear way.•A DC fault analysis provides minimal NIMDC inductors size as initial design values.•A generalization of the work using pu approach is also proposed.
This paper studies MMC-based non-isolated DC/DC converter for DC transmission grids. The key design parameters including operating frequency and size of passive components are evaluated with the aim of ensuring DC fault tolerance and minimizing losses and size. An analytical model is used to perform parametric studies while detailed non-linear model is used for verification. The case study on 600MW, 320 kV/250 kV system reveals the narrow range of optimal cell capacitance and arm inductance while lower-side arms require substantially larger capacitors. With the targeted losses of 1.5%, and voltage ripple of ±5%, it is recommended to use around 150 Hz operating frequency. For the offshore applications, higher frequency enables significantly smaller size with some increase in losses. The line inductor on the low-voltage side should be much larger than the arm inductor and plays a key role in the dc fault responses. |
doi_str_mv | 10.1016/j.epsr.2020.106896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510603773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779620306945</els_id><sourcerecordid>2510603773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e352249ea24009a5cdb0e250001ca380fb411bf8e5e4b41ddae90537b6e6a6e93</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wssU5rO4mTSGxQyktqxQJYW44zaR2ldrDdov49jsqa1YxG987cOQjdUTKnhPJFP4fRuzkjbBrwsuJnaEbLIk0Yyfg5mpG0KJOiqPgluvK-J4TwqshnSH3AACpos8Gdg-89GHXE0rR4lE7uIIDz2HZ4WSed3A8BBzuAkyZgY02ivR1kgBZv9WaLR_sDDq_XdVQvljVW1hzAxQ036KKTg4fbv3qNvp6fPuvXZPX-8lY_rhKVsjIkkOaMZRVIlhFSyVy1DQGWx6hUybQkXZNR2nQl5JDFtm0lVCRPi4YDlxyq9Brdn_aOzsZPfBC93TsTTwqWRyqRQZFGFTuplLPeO-jE6PROuqOgREwwRS8mmGKCKU4wo-nhZIKY_6DBCa90ZAWtdhGfaK3-z_4Llmx9Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510603773</pqid></control><display><type>article</type><title>Selecting frequency and parameters of DC-fault tolerant non-isolated high power MMC DC/DC converter</title><source>Elsevier ScienceDirect Journals</source><creator>Jamshidi Far, A. ; Jovcic, D. ; Nami, A. ; Okazaki, Y.</creator><creatorcontrib>Jamshidi Far, A. ; Jovcic, D. ; Nami, A. ; Okazaki, Y.</creatorcontrib><description>•Non-isolated MMC DC/DC converter (NIMDC) parameters design is proposed.•The design goals are set to power loss of 1.5%, and voltage ripple of around ±5%.•The NIMDC parameters affect each other in a highly non-linear way.•A DC fault analysis provides minimal NIMDC inductors size as initial design values.•A generalization of the work using pu approach is also proposed.
This paper studies MMC-based non-isolated DC/DC converter for DC transmission grids. The key design parameters including operating frequency and size of passive components are evaluated with the aim of ensuring DC fault tolerance and minimizing losses and size. An analytical model is used to perform parametric studies while detailed non-linear model is used for verification. The case study on 600MW, 320 kV/250 kV system reveals the narrow range of optimal cell capacitance and arm inductance while lower-side arms require substantially larger capacitors. With the targeted losses of 1.5%, and voltage ripple of ±5%, it is recommended to use around 150 Hz operating frequency. For the offshore applications, higher frequency enables significantly smaller size with some increase in losses. The line inductor on the low-voltage side should be much larger than the arm inductor and plays a key role in the dc fault responses.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2020.106896</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>DC Grids ; Design parameters ; Electric converters ; Electric currents ; Electric potential ; Electricity ; Energy consumption ; Fault tolerance ; High power DC-DC converter ; HVDC ; Inductance ; Mathematical models ; Passive components ; Surge protectors ; Voltage ; Voltage converters (DC to DC)</subject><ispartof>Electric power systems research, 2021-02, Vol.191, p.106896, Article 106896</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e352249ea24009a5cdb0e250001ca380fb411bf8e5e4b41ddae90537b6e6a6e93</citedby><cites>FETCH-LOGICAL-c328t-e352249ea24009a5cdb0e250001ca380fb411bf8e5e4b41ddae90537b6e6a6e93</cites><orcidid>0000-0002-9447-3487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378779620306945$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jamshidi Far, A.</creatorcontrib><creatorcontrib>Jovcic, D.</creatorcontrib><creatorcontrib>Nami, A.</creatorcontrib><creatorcontrib>Okazaki, Y.</creatorcontrib><title>Selecting frequency and parameters of DC-fault tolerant non-isolated high power MMC DC/DC converter</title><title>Electric power systems research</title><description>•Non-isolated MMC DC/DC converter (NIMDC) parameters design is proposed.•The design goals are set to power loss of 1.5%, and voltage ripple of around ±5%.•The NIMDC parameters affect each other in a highly non-linear way.•A DC fault analysis provides minimal NIMDC inductors size as initial design values.•A generalization of the work using pu approach is also proposed.
This paper studies MMC-based non-isolated DC/DC converter for DC transmission grids. The key design parameters including operating frequency and size of passive components are evaluated with the aim of ensuring DC fault tolerance and minimizing losses and size. An analytical model is used to perform parametric studies while detailed non-linear model is used for verification. The case study on 600MW, 320 kV/250 kV system reveals the narrow range of optimal cell capacitance and arm inductance while lower-side arms require substantially larger capacitors. With the targeted losses of 1.5%, and voltage ripple of ±5%, it is recommended to use around 150 Hz operating frequency. For the offshore applications, higher frequency enables significantly smaller size with some increase in losses. The line inductor on the low-voltage side should be much larger than the arm inductor and plays a key role in the dc fault responses.</description><subject>DC Grids</subject><subject>Design parameters</subject><subject>Electric converters</subject><subject>Electric currents</subject><subject>Electric potential</subject><subject>Electricity</subject><subject>Energy consumption</subject><subject>Fault tolerance</subject><subject>High power DC-DC converter</subject><subject>HVDC</subject><subject>Inductance</subject><subject>Mathematical models</subject><subject>Passive components</subject><subject>Surge protectors</subject><subject>Voltage</subject><subject>Voltage converters (DC to DC)</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6wssU5rO4mTSGxQyktqxQJYW44zaR2ldrDdov49jsqa1YxG987cOQjdUTKnhPJFP4fRuzkjbBrwsuJnaEbLIk0Yyfg5mpG0KJOiqPgluvK-J4TwqshnSH3AACpos8Gdg-89GHXE0rR4lE7uIIDz2HZ4WSed3A8BBzuAkyZgY02ivR1kgBZv9WaLR_sDDq_XdVQvljVW1hzAxQ036KKTg4fbv3qNvp6fPuvXZPX-8lY_rhKVsjIkkOaMZRVIlhFSyVy1DQGWx6hUybQkXZNR2nQl5JDFtm0lVCRPi4YDlxyq9Brdn_aOzsZPfBC93TsTTwqWRyqRQZFGFTuplLPeO-jE6PROuqOgREwwRS8mmGKCKU4wo-nhZIKY_6DBCa90ZAWtdhGfaK3-z_4Llmx9Rg</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Jamshidi Far, A.</creator><creator>Jovcic, D.</creator><creator>Nami, A.</creator><creator>Okazaki, Y.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9447-3487</orcidid></search><sort><creationdate>202102</creationdate><title>Selecting frequency and parameters of DC-fault tolerant non-isolated high power MMC DC/DC converter</title><author>Jamshidi Far, A. ; Jovcic, D. ; Nami, A. ; Okazaki, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e352249ea24009a5cdb0e250001ca380fb411bf8e5e4b41ddae90537b6e6a6e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>DC Grids</topic><topic>Design parameters</topic><topic>Electric converters</topic><topic>Electric currents</topic><topic>Electric potential</topic><topic>Electricity</topic><topic>Energy consumption</topic><topic>Fault tolerance</topic><topic>High power DC-DC converter</topic><topic>HVDC</topic><topic>Inductance</topic><topic>Mathematical models</topic><topic>Passive components</topic><topic>Surge protectors</topic><topic>Voltage</topic><topic>Voltage converters (DC to DC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamshidi Far, A.</creatorcontrib><creatorcontrib>Jovcic, D.</creatorcontrib><creatorcontrib>Nami, A.</creatorcontrib><creatorcontrib>Okazaki, Y.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamshidi Far, A.</au><au>Jovcic, D.</au><au>Nami, A.</au><au>Okazaki, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting frequency and parameters of DC-fault tolerant non-isolated high power MMC DC/DC converter</atitle><jtitle>Electric power systems research</jtitle><date>2021-02</date><risdate>2021</risdate><volume>191</volume><spage>106896</spage><pages>106896-</pages><artnum>106896</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Non-isolated MMC DC/DC converter (NIMDC) parameters design is proposed.•The design goals are set to power loss of 1.5%, and voltage ripple of around ±5%.•The NIMDC parameters affect each other in a highly non-linear way.•A DC fault analysis provides minimal NIMDC inductors size as initial design values.•A generalization of the work using pu approach is also proposed.
This paper studies MMC-based non-isolated DC/DC converter for DC transmission grids. The key design parameters including operating frequency and size of passive components are evaluated with the aim of ensuring DC fault tolerance and minimizing losses and size. An analytical model is used to perform parametric studies while detailed non-linear model is used for verification. The case study on 600MW, 320 kV/250 kV system reveals the narrow range of optimal cell capacitance and arm inductance while lower-side arms require substantially larger capacitors. With the targeted losses of 1.5%, and voltage ripple of ±5%, it is recommended to use around 150 Hz operating frequency. For the offshore applications, higher frequency enables significantly smaller size with some increase in losses. The line inductor on the low-voltage side should be much larger than the arm inductor and plays a key role in the dc fault responses.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2020.106896</doi><orcidid>https://orcid.org/0000-0002-9447-3487</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7796 |
ispartof | Electric power systems research, 2021-02, Vol.191, p.106896, Article 106896 |
issn | 0378-7796 1873-2046 |
language | eng |
recordid | cdi_proquest_journals_2510603773 |
source | Elsevier ScienceDirect Journals |
subjects | DC Grids Design parameters Electric converters Electric currents Electric potential Electricity Energy consumption Fault tolerance High power DC-DC converter HVDC Inductance Mathematical models Passive components Surge protectors Voltage Voltage converters (DC to DC) |
title | Selecting frequency and parameters of DC-fault tolerant non-isolated high power MMC DC/DC converter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20frequency%20and%20parameters%20of%20DC-fault%20tolerant%20non-isolated%20high%20power%20MMC%20DC/DC%20converter&rft.jtitle=Electric%20power%20systems%20research&rft.au=Jamshidi%20Far,%20A.&rft.date=2021-02&rft.volume=191&rft.spage=106896&rft.pages=106896-&rft.artnum=106896&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2020.106896&rft_dat=%3Cproquest_cross%3E2510603773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510603773&rft_id=info:pmid/&rft_els_id=S0378779620306945&rfr_iscdi=true |