On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions

Let ϕ be a nonstandard involution on the set of all quaternion numbers, and α be a quaternion such that ϕ(α)=α. For any n×n quaternion matrix A, the notion of numerical range of A with respect to ϕ, Wϕ(α)(A), was introduced by L. Rodman in 2014, and for the case α=0, he characterized all quaternion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2021-02, Vol.610, p.59-72
Hauptverfasser: Rahjoo, Meysam, Aghamollaei, Gholamreza, Momenaee Kermani, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 59
container_title Linear algebra and its applications
container_volume 610
creator Rahjoo, Meysam
Aghamollaei, Gholamreza
Momenaee Kermani, Hossein
description Let ϕ be a nonstandard involution on the set of all quaternion numbers, and α be a quaternion such that ϕ(α)=α. For any n×n quaternion matrix A, the notion of numerical range of A with respect to ϕ, Wϕ(α)(A), was introduced by L. Rodman in 2014, and for the case α=0, he characterized all quaternion matrices A whose Wϕ(0)(A) is bounded. In this paper, for the case α≠0, those quaternion matrices A for which Wϕ(α)(A) is bounded, are characterized. Also, by introducing the notion of ϕ-class of a quaternion number, all quaternion matrices A whose Wϕ(α)(A) is a singleton set, are characterized, and for n≥3, it is shown that Wϕ(α)(A) is bounded if and only if it is a singleton set.
doi_str_mv 10.1016/j.laa.2020.09.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510603543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002437952030464X</els_id><sourcerecordid>2510603543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c388ce14f0dc35b404652d9f0da599b788fa7ce298bcee41199d27d7efb23ba73</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWB8_wFvAc9dJsq_gSYovKPSiJw8hm8zalJq0SVbx3xupZy8zDMw3j4-QKwYVA9bebKqt1hUHDhXICkR7RGas78Sc9U17TGYAvJ6LTjan5CylDQDUHfAZeVt5mtdIhzB5i9ZjSjSMdD_pjNG74J2hfvrA6Ize0qj9Oyb65fKaRkw7NJnmQH3wKWtvdbTU-c-wnXIh0wU5GfU24eVfPievD_cvi6f5cvX4vLhbzo3gTS6x7w2yegRrRDPUULcNt7KUupFy6Pp-1J1BLvvBINaMSWl5ZzscBy4G3Ylzcn2Yu4thP2HKahOm6MtKxRsGLYimFqWLHbpMDClFHNUuug8dvxUD9etQbVRxqH4dKpCqOCzM7YHBcv6nw6iScegNWhfL78oG9w_9A6Pke3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510603543</pqid></control><display><type>article</type><title>On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rahjoo, Meysam ; Aghamollaei, Gholamreza ; Momenaee Kermani, Hossein</creator><creatorcontrib>Rahjoo, Meysam ; Aghamollaei, Gholamreza ; Momenaee Kermani, Hossein</creatorcontrib><description>Let ϕ be a nonstandard involution on the set of all quaternion numbers, and α be a quaternion such that ϕ(α)=α. For any n×n quaternion matrix A, the notion of numerical range of A with respect to ϕ, Wϕ(α)(A), was introduced by L. Rodman in 2014, and for the case α=0, he characterized all quaternion matrices A whose Wϕ(0)(A) is bounded. In this paper, for the case α≠0, those quaternion matrices A for which Wϕ(α)(A) is bounded, are characterized. Also, by introducing the notion of ϕ-class of a quaternion number, all quaternion matrices A whose Wϕ(α)(A) is a singleton set, are characterized, and for n≥3, it is shown that Wϕ(α)(A) is bounded if and only if it is a singleton set.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.09.036</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Linear algebra ; Nonstandard involution ; Numerical range ; Quaternion matrices ; Quaternions</subject><ispartof>Linear algebra and its applications, 2021-02, Vol.610, p.59-72</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Feb 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c388ce14f0dc35b404652d9f0da599b788fa7ce298bcee41199d27d7efb23ba73</citedby><cites>FETCH-LOGICAL-c325t-c388ce14f0dc35b404652d9f0da599b788fa7ce298bcee41199d27d7efb23ba73</cites><orcidid>0000-0001-7731-4137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.09.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Rahjoo, Meysam</creatorcontrib><creatorcontrib>Aghamollaei, Gholamreza</creatorcontrib><creatorcontrib>Momenaee Kermani, Hossein</creatorcontrib><title>On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions</title><title>Linear algebra and its applications</title><description>Let ϕ be a nonstandard involution on the set of all quaternion numbers, and α be a quaternion such that ϕ(α)=α. For any n×n quaternion matrix A, the notion of numerical range of A with respect to ϕ, Wϕ(α)(A), was introduced by L. Rodman in 2014, and for the case α=0, he characterized all quaternion matrices A whose Wϕ(0)(A) is bounded. In this paper, for the case α≠0, those quaternion matrices A for which Wϕ(α)(A) is bounded, are characterized. Also, by introducing the notion of ϕ-class of a quaternion number, all quaternion matrices A whose Wϕ(α)(A) is a singleton set, are characterized, and for n≥3, it is shown that Wϕ(α)(A) is bounded if and only if it is a singleton set.</description><subject>Linear algebra</subject><subject>Nonstandard involution</subject><subject>Numerical range</subject><subject>Quaternion matrices</subject><subject>Quaternions</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWB8_wFvAc9dJsq_gSYovKPSiJw8hm8zalJq0SVbx3xupZy8zDMw3j4-QKwYVA9bebKqt1hUHDhXICkR7RGas78Sc9U17TGYAvJ6LTjan5CylDQDUHfAZeVt5mtdIhzB5i9ZjSjSMdD_pjNG74J2hfvrA6Ize0qj9Oyb65fKaRkw7NJnmQH3wKWtvdbTU-c-wnXIh0wU5GfU24eVfPievD_cvi6f5cvX4vLhbzo3gTS6x7w2yegRrRDPUULcNt7KUupFy6Pp-1J1BLvvBINaMSWl5ZzscBy4G3Ylzcn2Yu4thP2HKahOm6MtKxRsGLYimFqWLHbpMDClFHNUuug8dvxUD9etQbVRxqH4dKpCqOCzM7YHBcv6nw6iScegNWhfL78oG9w_9A6Pke3A</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Rahjoo, Meysam</creator><creator>Aghamollaei, Gholamreza</creator><creator>Momenaee Kermani, Hossein</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7731-4137</orcidid></search><sort><creationdate>20210201</creationdate><title>On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions</title><author>Rahjoo, Meysam ; Aghamollaei, Gholamreza ; Momenaee Kermani, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c388ce14f0dc35b404652d9f0da599b788fa7ce298bcee41199d27d7efb23ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Linear algebra</topic><topic>Nonstandard involution</topic><topic>Numerical range</topic><topic>Quaternion matrices</topic><topic>Quaternions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahjoo, Meysam</creatorcontrib><creatorcontrib>Aghamollaei, Gholamreza</creatorcontrib><creatorcontrib>Momenaee Kermani, Hossein</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahjoo, Meysam</au><au>Aghamollaei, Gholamreza</au><au>Momenaee Kermani, Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>610</volume><spage>59</spage><epage>72</epage><pages>59-72</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let ϕ be a nonstandard involution on the set of all quaternion numbers, and α be a quaternion such that ϕ(α)=α. For any n×n quaternion matrix A, the notion of numerical range of A with respect to ϕ, Wϕ(α)(A), was introduced by L. Rodman in 2014, and for the case α=0, he characterized all quaternion matrices A whose Wϕ(0)(A) is bounded. In this paper, for the case α≠0, those quaternion matrices A for which Wϕ(α)(A) is bounded, are characterized. Also, by introducing the notion of ϕ-class of a quaternion number, all quaternion matrices A whose Wϕ(α)(A) is a singleton set, are characterized, and for n≥3, it is shown that Wϕ(α)(A) is bounded if and only if it is a singleton set.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.09.036</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7731-4137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2021-02, Vol.610, p.59-72
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2510603543
source Elsevier ScienceDirect Journals Complete
subjects Linear algebra
Nonstandard involution
Numerical range
Quaternion matrices
Quaternions
title On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20boundedness%20of%20quaternionic%20numerical%20ranges%20with%20respect%20to%20nonstandard%20involutions&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Rahjoo,%20Meysam&rft.date=2021-02-01&rft.volume=610&rft.spage=59&rft.epage=72&rft.pages=59-72&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.09.036&rft_dat=%3Cproquest_cross%3E2510603543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510603543&rft_id=info:pmid/&rft_els_id=S002437952030464X&rfr_iscdi=true