On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions
Let ϕ be a nonstandard involution on the set of all quaternion numbers, and α be a quaternion such that ϕ(α)=α. For any n×n quaternion matrix A, the notion of numerical range of A with respect to ϕ, Wϕ(α)(A), was introduced by L. Rodman in 2014, and for the case α=0, he characterized all quaternion...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2021-02, Vol.610, p.59-72 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 59 |
container_title | Linear algebra and its applications |
container_volume | 610 |
creator | Rahjoo, Meysam Aghamollaei, Gholamreza Momenaee Kermani, Hossein |
description | Let ϕ be a nonstandard involution on the set of all quaternion numbers, and α be a quaternion such that ϕ(α)=α. For any n×n quaternion matrix A, the notion of numerical range of A with respect to ϕ, Wϕ(α)(A), was introduced by L. Rodman in 2014, and for the case α=0, he characterized all quaternion matrices A whose Wϕ(0)(A) is bounded. In this paper, for the case α≠0, those quaternion matrices A for which Wϕ(α)(A) is bounded, are characterized. Also, by introducing the notion of ϕ-class of a quaternion number, all quaternion matrices A whose Wϕ(α)(A) is a singleton set, are characterized, and for n≥3, it is shown that Wϕ(α)(A) is bounded if and only if it is a singleton set. |
doi_str_mv | 10.1016/j.laa.2020.09.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510603543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002437952030464X</els_id><sourcerecordid>2510603543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c388ce14f0dc35b404652d9f0da599b788fa7ce298bcee41199d27d7efb23ba73</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWB8_wFvAc9dJsq_gSYovKPSiJw8hm8zalJq0SVbx3xupZy8zDMw3j4-QKwYVA9bebKqt1hUHDhXICkR7RGas78Sc9U17TGYAvJ6LTjan5CylDQDUHfAZeVt5mtdIhzB5i9ZjSjSMdD_pjNG74J2hfvrA6Ize0qj9Oyb65fKaRkw7NJnmQH3wKWtvdbTU-c-wnXIh0wU5GfU24eVfPievD_cvi6f5cvX4vLhbzo3gTS6x7w2yegRrRDPUULcNt7KUupFy6Pp-1J1BLvvBINaMSWl5ZzscBy4G3Ylzcn2Yu4thP2HKahOm6MtKxRsGLYimFqWLHbpMDClFHNUuug8dvxUD9etQbVRxqH4dKpCqOCzM7YHBcv6nw6iScegNWhfL78oG9w_9A6Pke3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510603543</pqid></control><display><type>article</type><title>On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rahjoo, Meysam ; Aghamollaei, Gholamreza ; Momenaee Kermani, Hossein</creator><creatorcontrib>Rahjoo, Meysam ; Aghamollaei, Gholamreza ; Momenaee Kermani, Hossein</creatorcontrib><description>Let ϕ be a nonstandard involution on the set of all quaternion numbers, and α be a quaternion such that ϕ(α)=α. For any n×n quaternion matrix A, the notion of numerical range of A with respect to ϕ, Wϕ(α)(A), was introduced by L. Rodman in 2014, and for the case α=0, he characterized all quaternion matrices A whose Wϕ(0)(A) is bounded. In this paper, for the case α≠0, those quaternion matrices A for which Wϕ(α)(A) is bounded, are characterized. Also, by introducing the notion of ϕ-class of a quaternion number, all quaternion matrices A whose Wϕ(α)(A) is a singleton set, are characterized, and for n≥3, it is shown that Wϕ(α)(A) is bounded if and only if it is a singleton set.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.09.036</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Linear algebra ; Nonstandard involution ; Numerical range ; Quaternion matrices ; Quaternions</subject><ispartof>Linear algebra and its applications, 2021-02, Vol.610, p.59-72</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Feb 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c388ce14f0dc35b404652d9f0da599b788fa7ce298bcee41199d27d7efb23ba73</citedby><cites>FETCH-LOGICAL-c325t-c388ce14f0dc35b404652d9f0da599b788fa7ce298bcee41199d27d7efb23ba73</cites><orcidid>0000-0001-7731-4137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.09.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Rahjoo, Meysam</creatorcontrib><creatorcontrib>Aghamollaei, Gholamreza</creatorcontrib><creatorcontrib>Momenaee Kermani, Hossein</creatorcontrib><title>On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions</title><title>Linear algebra and its applications</title><description>Let ϕ be a nonstandard involution on the set of all quaternion numbers, and α be a quaternion such that ϕ(α)=α. For any n×n quaternion matrix A, the notion of numerical range of A with respect to ϕ, Wϕ(α)(A), was introduced by L. Rodman in 2014, and for the case α=0, he characterized all quaternion matrices A whose Wϕ(0)(A) is bounded. In this paper, for the case α≠0, those quaternion matrices A for which Wϕ(α)(A) is bounded, are characterized. Also, by introducing the notion of ϕ-class of a quaternion number, all quaternion matrices A whose Wϕ(α)(A) is a singleton set, are characterized, and for n≥3, it is shown that Wϕ(α)(A) is bounded if and only if it is a singleton set.</description><subject>Linear algebra</subject><subject>Nonstandard involution</subject><subject>Numerical range</subject><subject>Quaternion matrices</subject><subject>Quaternions</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWB8_wFvAc9dJsq_gSYovKPSiJw8hm8zalJq0SVbx3xupZy8zDMw3j4-QKwYVA9bebKqt1hUHDhXICkR7RGas78Sc9U17TGYAvJ6LTjan5CylDQDUHfAZeVt5mtdIhzB5i9ZjSjSMdD_pjNG74J2hfvrA6Ize0qj9Oyb65fKaRkw7NJnmQH3wKWtvdbTU-c-wnXIh0wU5GfU24eVfPievD_cvi6f5cvX4vLhbzo3gTS6x7w2yegRrRDPUULcNt7KUupFy6Pp-1J1BLvvBINaMSWl5ZzscBy4G3Ylzcn2Yu4thP2HKahOm6MtKxRsGLYimFqWLHbpMDClFHNUuug8dvxUD9etQbVRxqH4dKpCqOCzM7YHBcv6nw6iScegNWhfL78oG9w_9A6Pke3A</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Rahjoo, Meysam</creator><creator>Aghamollaei, Gholamreza</creator><creator>Momenaee Kermani, Hossein</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7731-4137</orcidid></search><sort><creationdate>20210201</creationdate><title>On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions</title><author>Rahjoo, Meysam ; Aghamollaei, Gholamreza ; Momenaee Kermani, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c388ce14f0dc35b404652d9f0da599b788fa7ce298bcee41199d27d7efb23ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Linear algebra</topic><topic>Nonstandard involution</topic><topic>Numerical range</topic><topic>Quaternion matrices</topic><topic>Quaternions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahjoo, Meysam</creatorcontrib><creatorcontrib>Aghamollaei, Gholamreza</creatorcontrib><creatorcontrib>Momenaee Kermani, Hossein</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahjoo, Meysam</au><au>Aghamollaei, Gholamreza</au><au>Momenaee Kermani, Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>610</volume><spage>59</spage><epage>72</epage><pages>59-72</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let ϕ be a nonstandard involution on the set of all quaternion numbers, and α be a quaternion such that ϕ(α)=α. For any n×n quaternion matrix A, the notion of numerical range of A with respect to ϕ, Wϕ(α)(A), was introduced by L. Rodman in 2014, and for the case α=0, he characterized all quaternion matrices A whose Wϕ(0)(A) is bounded. In this paper, for the case α≠0, those quaternion matrices A for which Wϕ(α)(A) is bounded, are characterized. Also, by introducing the notion of ϕ-class of a quaternion number, all quaternion matrices A whose Wϕ(α)(A) is a singleton set, are characterized, and for n≥3, it is shown that Wϕ(α)(A) is bounded if and only if it is a singleton set.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.09.036</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7731-4137</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2021-02, Vol.610, p.59-72 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2510603543 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Linear algebra Nonstandard involution Numerical range Quaternion matrices Quaternions |
title | On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20boundedness%20of%20quaternionic%20numerical%20ranges%20with%20respect%20to%20nonstandard%20involutions&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Rahjoo,%20Meysam&rft.date=2021-02-01&rft.volume=610&rft.spage=59&rft.epage=72&rft.pages=59-72&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.09.036&rft_dat=%3Cproquest_cross%3E2510603543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510603543&rft_id=info:pmid/&rft_els_id=S002437952030464X&rfr_iscdi=true |