Spin-orbit torques: Materials, mechanisms, performances, and potential applications
Current-induced spin-orbit torque (SOT) is attracting increasing interest and exciting significant research activity. We aim to provide a comprehensive review of recent progress in SOT in various materials. The intrinsic correlation between the heterostructure and SOT behaviors is emphasized. We fir...
Gespeichert in:
Veröffentlicht in: | Progress in materials science 2021-05, Vol.118, p.100761, Article 100761 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 100761 |
container_title | Progress in materials science |
container_volume | 118 |
creator | Song, Cheng Zhang, Ruiqi Liao, Liyang Zhou, Yongjian Zhou, Xiaofeng Chen, Ruyi You, Yunfeng Chen, Xianzhe Pan, Feng |
description | Current-induced spin-orbit torque (SOT) is attracting increasing interest and exciting significant research activity. We aim to provide a comprehensive review of recent progress in SOT in various materials. The intrinsic correlation between the heterostructure and SOT behaviors is emphasized. We first present a brief summary of the spin-orbit coupling in inversion-asymmetric magnetic systems and describe the discovery, classification and development of SOT. Then we focus on the characterization techniques and classification of SOT from the viewpoint of materials, including both spin sources and magnetic functional layers. In the third part, the mechanisms of SOT are discussed in detail, including spin Hall effect, Rashba effect, and emerging new mechanisms. The fourth part illustrates SOT in subdivided magnetic systems, including heavy metal combined with ferromagnets, ferrimagnets and antiferromagnets, and systems with topological insulators and single layer magnets. The fifth part presents typical performances of SOT, including the modulation, improvement, and field-free switching through material design, and discusses its promising applications for non-volatile SOT-magnetic random access memory and other device configurations. We conclude with a discussion of the challenges and future prospects of SOT, which will inspire more in-depth research and advance the practical applications. |
doi_str_mv | 10.1016/j.pmatsci.2020.100761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510603271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079642520301250</els_id><sourcerecordid>2510603271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-866d7af076e77e32bccdd9ab9f8e82af584ee453fb6a4544fca1c2dac048687d3</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLg-vEThIJXuyZp2ma9iCx-wYqH1XNIkwmmbJuYZAX_vSndu6eZebw38-YhdEXwkmDS3PZLP8gUlV1STCcMtw05QgvC26qkFPNjtMjYqmwYrU_RWYw9zjPBqwXabr0dSxc6m4rkwvce4l3xJhMEK3fxphhAfcnRxiH3HoJxYZCjgjzJURfeJRhTZhbS-51VMlk3xgt0YrIYLg_1HH0-PX6sX8rN-_Pr-mFTKoarVPKm0a002Sy0LVS0U0rrlexWhgOn0tScAbC6Ml0jWc2YUZIoqqXCjDe81dU5up73-uAm40n0bh_GfFLQmuAGV7QlmVXPLBVcjAGM8MEOMvwKgsWUn-jFIT8x5Sfm_LLuftZBfuHHQhCZAfl3bQOoJLSz_2z4A48BfQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510603271</pqid></control><display><type>article</type><title>Spin-orbit torques: Materials, mechanisms, performances, and potential applications</title><source>Elsevier ScienceDirect Journals</source><creator>Song, Cheng ; Zhang, Ruiqi ; Liao, Liyang ; Zhou, Yongjian ; Zhou, Xiaofeng ; Chen, Ruyi ; You, Yunfeng ; Chen, Xianzhe ; Pan, Feng</creator><creatorcontrib>Song, Cheng ; Zhang, Ruiqi ; Liao, Liyang ; Zhou, Yongjian ; Zhou, Xiaofeng ; Chen, Ruyi ; You, Yunfeng ; Chen, Xianzhe ; Pan, Feng</creatorcontrib><description>Current-induced spin-orbit torque (SOT) is attracting increasing interest and exciting significant research activity. We aim to provide a comprehensive review of recent progress in SOT in various materials. The intrinsic correlation between the heterostructure and SOT behaviors is emphasized. We first present a brief summary of the spin-orbit coupling in inversion-asymmetric magnetic systems and describe the discovery, classification and development of SOT. Then we focus on the characterization techniques and classification of SOT from the viewpoint of materials, including both spin sources and magnetic functional layers. In the third part, the mechanisms of SOT are discussed in detail, including spin Hall effect, Rashba effect, and emerging new mechanisms. The fourth part illustrates SOT in subdivided magnetic systems, including heavy metal combined with ferromagnets, ferrimagnets and antiferromagnets, and systems with topological insulators and single layer magnets. The fifth part presents typical performances of SOT, including the modulation, improvement, and field-free switching through material design, and discusses its promising applications for non-volatile SOT-magnetic random access memory and other device configurations. We conclude with a discussion of the challenges and future prospects of SOT, which will inspire more in-depth research and advance the practical applications.</description><identifier>ISSN: 0079-6425</identifier><identifier>EISSN: 1873-2208</identifier><identifier>DOI: 10.1016/j.pmatsci.2020.100761</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Antiferromagnetism ; Classification ; Ferrimagnets ; Ferromagnetism ; Hall effect ; Heavy metals ; Heterostructures ; Magnetic random access memory ; Magnets ; Materials science ; Random access memory ; Rashba effect ; Spin Hall effect ; Spin-orbit interactions ; Spin-orbit torque ; Spintronics ; Topological insulators ; Torque</subject><ispartof>Progress in materials science, 2021-05, Vol.118, p.100761, Article 100761</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-866d7af076e77e32bccdd9ab9f8e82af584ee453fb6a4544fca1c2dac048687d3</citedby><cites>FETCH-LOGICAL-c403t-866d7af076e77e32bccdd9ab9f8e82af584ee453fb6a4544fca1c2dac048687d3</cites><orcidid>0000-0002-7651-9031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079642520301250$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Song, Cheng</creatorcontrib><creatorcontrib>Zhang, Ruiqi</creatorcontrib><creatorcontrib>Liao, Liyang</creatorcontrib><creatorcontrib>Zhou, Yongjian</creatorcontrib><creatorcontrib>Zhou, Xiaofeng</creatorcontrib><creatorcontrib>Chen, Ruyi</creatorcontrib><creatorcontrib>You, Yunfeng</creatorcontrib><creatorcontrib>Chen, Xianzhe</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Spin-orbit torques: Materials, mechanisms, performances, and potential applications</title><title>Progress in materials science</title><description>Current-induced spin-orbit torque (SOT) is attracting increasing interest and exciting significant research activity. We aim to provide a comprehensive review of recent progress in SOT in various materials. The intrinsic correlation between the heterostructure and SOT behaviors is emphasized. We first present a brief summary of the spin-orbit coupling in inversion-asymmetric magnetic systems and describe the discovery, classification and development of SOT. Then we focus on the characterization techniques and classification of SOT from the viewpoint of materials, including both spin sources and magnetic functional layers. In the third part, the mechanisms of SOT are discussed in detail, including spin Hall effect, Rashba effect, and emerging new mechanisms. The fourth part illustrates SOT in subdivided magnetic systems, including heavy metal combined with ferromagnets, ferrimagnets and antiferromagnets, and systems with topological insulators and single layer magnets. The fifth part presents typical performances of SOT, including the modulation, improvement, and field-free switching through material design, and discusses its promising applications for non-volatile SOT-magnetic random access memory and other device configurations. We conclude with a discussion of the challenges and future prospects of SOT, which will inspire more in-depth research and advance the practical applications.</description><subject>Antiferromagnetism</subject><subject>Classification</subject><subject>Ferrimagnets</subject><subject>Ferromagnetism</subject><subject>Hall effect</subject><subject>Heavy metals</subject><subject>Heterostructures</subject><subject>Magnetic random access memory</subject><subject>Magnets</subject><subject>Materials science</subject><subject>Random access memory</subject><subject>Rashba effect</subject><subject>Spin Hall effect</subject><subject>Spin-orbit interactions</subject><subject>Spin-orbit torque</subject><subject>Spintronics</subject><subject>Topological insulators</subject><subject>Torque</subject><issn>0079-6425</issn><issn>1873-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLg-vEThIJXuyZp2ma9iCx-wYqH1XNIkwmmbJuYZAX_vSndu6eZebw38-YhdEXwkmDS3PZLP8gUlV1STCcMtw05QgvC26qkFPNjtMjYqmwYrU_RWYw9zjPBqwXabr0dSxc6m4rkwvce4l3xJhMEK3fxphhAfcnRxiH3HoJxYZCjgjzJURfeJRhTZhbS-51VMlk3xgt0YrIYLg_1HH0-PX6sX8rN-_Pr-mFTKoarVPKm0a002Sy0LVS0U0rrlexWhgOn0tScAbC6Ml0jWc2YUZIoqqXCjDe81dU5up73-uAm40n0bh_GfFLQmuAGV7QlmVXPLBVcjAGM8MEOMvwKgsWUn-jFIT8x5Sfm_LLuftZBfuHHQhCZAfl3bQOoJLSz_2z4A48BfQs</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Song, Cheng</creator><creator>Zhang, Ruiqi</creator><creator>Liao, Liyang</creator><creator>Zhou, Yongjian</creator><creator>Zhou, Xiaofeng</creator><creator>Chen, Ruyi</creator><creator>You, Yunfeng</creator><creator>Chen, Xianzhe</creator><creator>Pan, Feng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7651-9031</orcidid></search><sort><creationdate>202105</creationdate><title>Spin-orbit torques: Materials, mechanisms, performances, and potential applications</title><author>Song, Cheng ; Zhang, Ruiqi ; Liao, Liyang ; Zhou, Yongjian ; Zhou, Xiaofeng ; Chen, Ruyi ; You, Yunfeng ; Chen, Xianzhe ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-866d7af076e77e32bccdd9ab9f8e82af584ee453fb6a4544fca1c2dac048687d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiferromagnetism</topic><topic>Classification</topic><topic>Ferrimagnets</topic><topic>Ferromagnetism</topic><topic>Hall effect</topic><topic>Heavy metals</topic><topic>Heterostructures</topic><topic>Magnetic random access memory</topic><topic>Magnets</topic><topic>Materials science</topic><topic>Random access memory</topic><topic>Rashba effect</topic><topic>Spin Hall effect</topic><topic>Spin-orbit interactions</topic><topic>Spin-orbit torque</topic><topic>Spintronics</topic><topic>Topological insulators</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Cheng</creatorcontrib><creatorcontrib>Zhang, Ruiqi</creatorcontrib><creatorcontrib>Liao, Liyang</creatorcontrib><creatorcontrib>Zhou, Yongjian</creatorcontrib><creatorcontrib>Zhou, Xiaofeng</creatorcontrib><creatorcontrib>Chen, Ruyi</creatorcontrib><creatorcontrib>You, Yunfeng</creatorcontrib><creatorcontrib>Chen, Xianzhe</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Progress in materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Cheng</au><au>Zhang, Ruiqi</au><au>Liao, Liyang</au><au>Zhou, Yongjian</au><au>Zhou, Xiaofeng</au><au>Chen, Ruyi</au><au>You, Yunfeng</au><au>Chen, Xianzhe</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-orbit torques: Materials, mechanisms, performances, and potential applications</atitle><jtitle>Progress in materials science</jtitle><date>2021-05</date><risdate>2021</risdate><volume>118</volume><spage>100761</spage><pages>100761-</pages><artnum>100761</artnum><issn>0079-6425</issn><eissn>1873-2208</eissn><abstract>Current-induced spin-orbit torque (SOT) is attracting increasing interest and exciting significant research activity. We aim to provide a comprehensive review of recent progress in SOT in various materials. The intrinsic correlation between the heterostructure and SOT behaviors is emphasized. We first present a brief summary of the spin-orbit coupling in inversion-asymmetric magnetic systems and describe the discovery, classification and development of SOT. Then we focus on the characterization techniques and classification of SOT from the viewpoint of materials, including both spin sources and magnetic functional layers. In the third part, the mechanisms of SOT are discussed in detail, including spin Hall effect, Rashba effect, and emerging new mechanisms. The fourth part illustrates SOT in subdivided magnetic systems, including heavy metal combined with ferromagnets, ferrimagnets and antiferromagnets, and systems with topological insulators and single layer magnets. The fifth part presents typical performances of SOT, including the modulation, improvement, and field-free switching through material design, and discusses its promising applications for non-volatile SOT-magnetic random access memory and other device configurations. We conclude with a discussion of the challenges and future prospects of SOT, which will inspire more in-depth research and advance the practical applications.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.pmatsci.2020.100761</doi><orcidid>https://orcid.org/0000-0002-7651-9031</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6425 |
ispartof | Progress in materials science, 2021-05, Vol.118, p.100761, Article 100761 |
issn | 0079-6425 1873-2208 |
language | eng |
recordid | cdi_proquest_journals_2510603271 |
source | Elsevier ScienceDirect Journals |
subjects | Antiferromagnetism Classification Ferrimagnets Ferromagnetism Hall effect Heavy metals Heterostructures Magnetic random access memory Magnets Materials science Random access memory Rashba effect Spin Hall effect Spin-orbit interactions Spin-orbit torque Spintronics Topological insulators Torque |
title | Spin-orbit torques: Materials, mechanisms, performances, and potential applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-orbit%20torques:%20Materials,%20mechanisms,%20performances,%20and%20potential%20applications&rft.jtitle=Progress%20in%20materials%20science&rft.au=Song,%20Cheng&rft.date=2021-05&rft.volume=118&rft.spage=100761&rft.pages=100761-&rft.artnum=100761&rft.issn=0079-6425&rft.eissn=1873-2208&rft_id=info:doi/10.1016/j.pmatsci.2020.100761&rft_dat=%3Cproquest_cross%3E2510603271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510603271&rft_id=info:pmid/&rft_els_id=S0079642520301250&rfr_iscdi=true |