Spin-orbit torques: Materials, mechanisms, performances, and potential applications

Current-induced spin-orbit torque (SOT) is attracting increasing interest and exciting significant research activity. We aim to provide a comprehensive review of recent progress in SOT in various materials. The intrinsic correlation between the heterostructure and SOT behaviors is emphasized. We fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in materials science 2021-05, Vol.118, p.100761, Article 100761
Hauptverfasser: Song, Cheng, Zhang, Ruiqi, Liao, Liyang, Zhou, Yongjian, Zhou, Xiaofeng, Chen, Ruyi, You, Yunfeng, Chen, Xianzhe, Pan, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 100761
container_title Progress in materials science
container_volume 118
creator Song, Cheng
Zhang, Ruiqi
Liao, Liyang
Zhou, Yongjian
Zhou, Xiaofeng
Chen, Ruyi
You, Yunfeng
Chen, Xianzhe
Pan, Feng
description Current-induced spin-orbit torque (SOT) is attracting increasing interest and exciting significant research activity. We aim to provide a comprehensive review of recent progress in SOT in various materials. The intrinsic correlation between the heterostructure and SOT behaviors is emphasized. We first present a brief summary of the spin-orbit coupling in inversion-asymmetric magnetic systems and describe the discovery, classification and development of SOT. Then we focus on the characterization techniques and classification of SOT from the viewpoint of materials, including both spin sources and magnetic functional layers. In the third part, the mechanisms of SOT are discussed in detail, including spin Hall effect, Rashba effect, and emerging new mechanisms. The fourth part illustrates SOT in subdivided magnetic systems, including heavy metal combined with ferromagnets, ferrimagnets and antiferromagnets, and systems with topological insulators and single layer magnets. The fifth part presents typical performances of SOT, including the modulation, improvement, and field-free switching through material design, and discusses its promising applications for non-volatile SOT-magnetic random access memory and other device configurations. We conclude with a discussion of the challenges and future prospects of SOT, which will inspire more in-depth research and advance the practical applications.
doi_str_mv 10.1016/j.pmatsci.2020.100761
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510603271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079642520301250</els_id><sourcerecordid>2510603271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-866d7af076e77e32bccdd9ab9f8e82af584ee453fb6a4544fca1c2dac048687d3</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLg-vEThIJXuyZp2ma9iCx-wYqH1XNIkwmmbJuYZAX_vSndu6eZebw38-YhdEXwkmDS3PZLP8gUlV1STCcMtw05QgvC26qkFPNjtMjYqmwYrU_RWYw9zjPBqwXabr0dSxc6m4rkwvce4l3xJhMEK3fxphhAfcnRxiH3HoJxYZCjgjzJURfeJRhTZhbS-51VMlk3xgt0YrIYLg_1HH0-PX6sX8rN-_Pr-mFTKoarVPKm0a002Sy0LVS0U0rrlexWhgOn0tScAbC6Ml0jWc2YUZIoqqXCjDe81dU5up73-uAm40n0bh_GfFLQmuAGV7QlmVXPLBVcjAGM8MEOMvwKgsWUn-jFIT8x5Sfm_LLuftZBfuHHQhCZAfl3bQOoJLSz_2z4A48BfQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510603271</pqid></control><display><type>article</type><title>Spin-orbit torques: Materials, mechanisms, performances, and potential applications</title><source>Elsevier ScienceDirect Journals</source><creator>Song, Cheng ; Zhang, Ruiqi ; Liao, Liyang ; Zhou, Yongjian ; Zhou, Xiaofeng ; Chen, Ruyi ; You, Yunfeng ; Chen, Xianzhe ; Pan, Feng</creator><creatorcontrib>Song, Cheng ; Zhang, Ruiqi ; Liao, Liyang ; Zhou, Yongjian ; Zhou, Xiaofeng ; Chen, Ruyi ; You, Yunfeng ; Chen, Xianzhe ; Pan, Feng</creatorcontrib><description>Current-induced spin-orbit torque (SOT) is attracting increasing interest and exciting significant research activity. We aim to provide a comprehensive review of recent progress in SOT in various materials. The intrinsic correlation between the heterostructure and SOT behaviors is emphasized. We first present a brief summary of the spin-orbit coupling in inversion-asymmetric magnetic systems and describe the discovery, classification and development of SOT. Then we focus on the characterization techniques and classification of SOT from the viewpoint of materials, including both spin sources and magnetic functional layers. In the third part, the mechanisms of SOT are discussed in detail, including spin Hall effect, Rashba effect, and emerging new mechanisms. The fourth part illustrates SOT in subdivided magnetic systems, including heavy metal combined with ferromagnets, ferrimagnets and antiferromagnets, and systems with topological insulators and single layer magnets. The fifth part presents typical performances of SOT, including the modulation, improvement, and field-free switching through material design, and discusses its promising applications for non-volatile SOT-magnetic random access memory and other device configurations. We conclude with a discussion of the challenges and future prospects of SOT, which will inspire more in-depth research and advance the practical applications.</description><identifier>ISSN: 0079-6425</identifier><identifier>EISSN: 1873-2208</identifier><identifier>DOI: 10.1016/j.pmatsci.2020.100761</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Antiferromagnetism ; Classification ; Ferrimagnets ; Ferromagnetism ; Hall effect ; Heavy metals ; Heterostructures ; Magnetic random access memory ; Magnets ; Materials science ; Random access memory ; Rashba effect ; Spin Hall effect ; Spin-orbit interactions ; Spin-orbit torque ; Spintronics ; Topological insulators ; Torque</subject><ispartof>Progress in materials science, 2021-05, Vol.118, p.100761, Article 100761</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-866d7af076e77e32bccdd9ab9f8e82af584ee453fb6a4544fca1c2dac048687d3</citedby><cites>FETCH-LOGICAL-c403t-866d7af076e77e32bccdd9ab9f8e82af584ee453fb6a4544fca1c2dac048687d3</cites><orcidid>0000-0002-7651-9031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079642520301250$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Song, Cheng</creatorcontrib><creatorcontrib>Zhang, Ruiqi</creatorcontrib><creatorcontrib>Liao, Liyang</creatorcontrib><creatorcontrib>Zhou, Yongjian</creatorcontrib><creatorcontrib>Zhou, Xiaofeng</creatorcontrib><creatorcontrib>Chen, Ruyi</creatorcontrib><creatorcontrib>You, Yunfeng</creatorcontrib><creatorcontrib>Chen, Xianzhe</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Spin-orbit torques: Materials, mechanisms, performances, and potential applications</title><title>Progress in materials science</title><description>Current-induced spin-orbit torque (SOT) is attracting increasing interest and exciting significant research activity. We aim to provide a comprehensive review of recent progress in SOT in various materials. The intrinsic correlation between the heterostructure and SOT behaviors is emphasized. We first present a brief summary of the spin-orbit coupling in inversion-asymmetric magnetic systems and describe the discovery, classification and development of SOT. Then we focus on the characterization techniques and classification of SOT from the viewpoint of materials, including both spin sources and magnetic functional layers. In the third part, the mechanisms of SOT are discussed in detail, including spin Hall effect, Rashba effect, and emerging new mechanisms. The fourth part illustrates SOT in subdivided magnetic systems, including heavy metal combined with ferromagnets, ferrimagnets and antiferromagnets, and systems with topological insulators and single layer magnets. The fifth part presents typical performances of SOT, including the modulation, improvement, and field-free switching through material design, and discusses its promising applications for non-volatile SOT-magnetic random access memory and other device configurations. We conclude with a discussion of the challenges and future prospects of SOT, which will inspire more in-depth research and advance the practical applications.</description><subject>Antiferromagnetism</subject><subject>Classification</subject><subject>Ferrimagnets</subject><subject>Ferromagnetism</subject><subject>Hall effect</subject><subject>Heavy metals</subject><subject>Heterostructures</subject><subject>Magnetic random access memory</subject><subject>Magnets</subject><subject>Materials science</subject><subject>Random access memory</subject><subject>Rashba effect</subject><subject>Spin Hall effect</subject><subject>Spin-orbit interactions</subject><subject>Spin-orbit torque</subject><subject>Spintronics</subject><subject>Topological insulators</subject><subject>Torque</subject><issn>0079-6425</issn><issn>1873-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLg-vEThIJXuyZp2ma9iCx-wYqH1XNIkwmmbJuYZAX_vSndu6eZebw38-YhdEXwkmDS3PZLP8gUlV1STCcMtw05QgvC26qkFPNjtMjYqmwYrU_RWYw9zjPBqwXabr0dSxc6m4rkwvce4l3xJhMEK3fxphhAfcnRxiH3HoJxYZCjgjzJURfeJRhTZhbS-51VMlk3xgt0YrIYLg_1HH0-PX6sX8rN-_Pr-mFTKoarVPKm0a002Sy0LVS0U0rrlexWhgOn0tScAbC6Ml0jWc2YUZIoqqXCjDe81dU5up73-uAm40n0bh_GfFLQmuAGV7QlmVXPLBVcjAGM8MEOMvwKgsWUn-jFIT8x5Sfm_LLuftZBfuHHQhCZAfl3bQOoJLSz_2z4A48BfQs</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Song, Cheng</creator><creator>Zhang, Ruiqi</creator><creator>Liao, Liyang</creator><creator>Zhou, Yongjian</creator><creator>Zhou, Xiaofeng</creator><creator>Chen, Ruyi</creator><creator>You, Yunfeng</creator><creator>Chen, Xianzhe</creator><creator>Pan, Feng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7651-9031</orcidid></search><sort><creationdate>202105</creationdate><title>Spin-orbit torques: Materials, mechanisms, performances, and potential applications</title><author>Song, Cheng ; Zhang, Ruiqi ; Liao, Liyang ; Zhou, Yongjian ; Zhou, Xiaofeng ; Chen, Ruyi ; You, Yunfeng ; Chen, Xianzhe ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-866d7af076e77e32bccdd9ab9f8e82af584ee453fb6a4544fca1c2dac048687d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiferromagnetism</topic><topic>Classification</topic><topic>Ferrimagnets</topic><topic>Ferromagnetism</topic><topic>Hall effect</topic><topic>Heavy metals</topic><topic>Heterostructures</topic><topic>Magnetic random access memory</topic><topic>Magnets</topic><topic>Materials science</topic><topic>Random access memory</topic><topic>Rashba effect</topic><topic>Spin Hall effect</topic><topic>Spin-orbit interactions</topic><topic>Spin-orbit torque</topic><topic>Spintronics</topic><topic>Topological insulators</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Cheng</creatorcontrib><creatorcontrib>Zhang, Ruiqi</creatorcontrib><creatorcontrib>Liao, Liyang</creatorcontrib><creatorcontrib>Zhou, Yongjian</creatorcontrib><creatorcontrib>Zhou, Xiaofeng</creatorcontrib><creatorcontrib>Chen, Ruyi</creatorcontrib><creatorcontrib>You, Yunfeng</creatorcontrib><creatorcontrib>Chen, Xianzhe</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Progress in materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Cheng</au><au>Zhang, Ruiqi</au><au>Liao, Liyang</au><au>Zhou, Yongjian</au><au>Zhou, Xiaofeng</au><au>Chen, Ruyi</au><au>You, Yunfeng</au><au>Chen, Xianzhe</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-orbit torques: Materials, mechanisms, performances, and potential applications</atitle><jtitle>Progress in materials science</jtitle><date>2021-05</date><risdate>2021</risdate><volume>118</volume><spage>100761</spage><pages>100761-</pages><artnum>100761</artnum><issn>0079-6425</issn><eissn>1873-2208</eissn><abstract>Current-induced spin-orbit torque (SOT) is attracting increasing interest and exciting significant research activity. We aim to provide a comprehensive review of recent progress in SOT in various materials. The intrinsic correlation between the heterostructure and SOT behaviors is emphasized. We first present a brief summary of the spin-orbit coupling in inversion-asymmetric magnetic systems and describe the discovery, classification and development of SOT. Then we focus on the characterization techniques and classification of SOT from the viewpoint of materials, including both spin sources and magnetic functional layers. In the third part, the mechanisms of SOT are discussed in detail, including spin Hall effect, Rashba effect, and emerging new mechanisms. The fourth part illustrates SOT in subdivided magnetic systems, including heavy metal combined with ferromagnets, ferrimagnets and antiferromagnets, and systems with topological insulators and single layer magnets. The fifth part presents typical performances of SOT, including the modulation, improvement, and field-free switching through material design, and discusses its promising applications for non-volatile SOT-magnetic random access memory and other device configurations. We conclude with a discussion of the challenges and future prospects of SOT, which will inspire more in-depth research and advance the practical applications.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.pmatsci.2020.100761</doi><orcidid>https://orcid.org/0000-0002-7651-9031</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0079-6425
ispartof Progress in materials science, 2021-05, Vol.118, p.100761, Article 100761
issn 0079-6425
1873-2208
language eng
recordid cdi_proquest_journals_2510603271
source Elsevier ScienceDirect Journals
subjects Antiferromagnetism
Classification
Ferrimagnets
Ferromagnetism
Hall effect
Heavy metals
Heterostructures
Magnetic random access memory
Magnets
Materials science
Random access memory
Rashba effect
Spin Hall effect
Spin-orbit interactions
Spin-orbit torque
Spintronics
Topological insulators
Torque
title Spin-orbit torques: Materials, mechanisms, performances, and potential applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-orbit%20torques:%20Materials,%20mechanisms,%20performances,%20and%20potential%20applications&rft.jtitle=Progress%20in%20materials%20science&rft.au=Song,%20Cheng&rft.date=2021-05&rft.volume=118&rft.spage=100761&rft.pages=100761-&rft.artnum=100761&rft.issn=0079-6425&rft.eissn=1873-2208&rft_id=info:doi/10.1016/j.pmatsci.2020.100761&rft_dat=%3Cproquest_cross%3E2510603271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510603271&rft_id=info:pmid/&rft_els_id=S0079642520301250&rfr_iscdi=true