Moisture Diagnosis of Transformer Oil-Immersed Insulation With Intelligent Technique and Frequency-Domain Spectroscopy

Moisture is one of the critical factors to determine the service life of transformers. The moisture inside the transformer oil-immersed insulation could be quantified with feature parameters. This article proposes and develops a genetic algorithm support vector machine (GA-SVM) model to carry out th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2021-07, Vol.17 (7), p.4624-4634
Hauptverfasser: Liu, Jiefeng, Fan, Xianhao, Zhang, Chaohai, Lai, Chun Sing, Zhang, Yiyi, Zheng, Hanbo, Lai, Loi Lei, Zhang, Enze
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4634
container_issue 7
container_start_page 4624
container_title IEEE transactions on industrial informatics
container_volume 17
creator Liu, Jiefeng
Fan, Xianhao
Zhang, Chaohai
Lai, Chun Sing
Zhang, Yiyi
Zheng, Hanbo
Lai, Loi Lei
Zhang, Enze
description Moisture is one of the critical factors to determine the service life of transformers. The moisture inside the transformer oil-immersed insulation could be quantified with feature parameters. This article proposes and develops a genetic algorithm support vector machine (GA-SVM) model to carry out the moisture diagnosis. Present findings reveal that these feature parameters can be obtained by using frequency-domain spectroscopy. Therefore, a novel model for predicting the frequency-domain spectroscopy curves is first reported based on a small number of samples, which could be utilized to obtain the feature parameters database to develop GA-SVM. Then, the moisture diagnosis in the lab and field conditions is presented to verify its feasibility and accuracy. The novelty of this article is in an exploration of the reported model as an intelligent based moisture diagnosis tool for power transformers.
doi_str_mv 10.1109/TII.2020.3014224
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2510430634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9157956</ieee_id><sourcerecordid>2510430634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-5cc920ed612f332c22af602ca0d860c9b0f0cb79acea7bb3d9fad76ac82ac3883</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYsoOKfvgi8Bnztvkn7lUabTwmQPVnwsaZpuGW1Sk1TYf2_Ghk_3XDjn3sMviu4xLDAG9lSV5YIAgQUFnBCSXEQzzBIcA6RwGXSa4pgSoNfRjXN7AJoDZbPo98Mo5ycr0YviW22ccsh0qLJcu87YQVq0UX1cDkE52aJSu6nnXhmNvpXfhd3LvldbqT2qpNhp9TNJxHWLVlYGqcUhfjEDVxp9jlJ4a5ww4-E2uup47-Tdec6jr9VrtXyP15u3cvm8jgUtwMepEIyAbDNMOkqJIIR3GRDBoS0yEKyBDkSTMy4kz5uGtqzjbZ5xURAeLhR0Hj2e7o7WhDbO13szWR1e1iTFkFDIaBJccHKJUM9Z2dWjVQO3hxpDfaRbB7r1kW59phsiD6eIklL-2xlOc5Zm9A8OAHiO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510430634</pqid></control><display><type>article</type><title>Moisture Diagnosis of Transformer Oil-Immersed Insulation With Intelligent Technique and Frequency-Domain Spectroscopy</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jiefeng ; Fan, Xianhao ; Zhang, Chaohai ; Lai, Chun Sing ; Zhang, Yiyi ; Zheng, Hanbo ; Lai, Loi Lei ; Zhang, Enze</creator><creatorcontrib>Liu, Jiefeng ; Fan, Xianhao ; Zhang, Chaohai ; Lai, Chun Sing ; Zhang, Yiyi ; Zheng, Hanbo ; Lai, Loi Lei ; Zhang, Enze</creatorcontrib><description>Moisture is one of the critical factors to determine the service life of transformers. The moisture inside the transformer oil-immersed insulation could be quantified with feature parameters. This article proposes and develops a genetic algorithm support vector machine (GA-SVM) model to carry out the moisture diagnosis. Present findings reveal that these feature parameters can be obtained by using frequency-domain spectroscopy. Therefore, a novel model for predicting the frequency-domain spectroscopy curves is first reported based on a small number of samples, which could be utilized to obtain the feature parameters database to develop GA-SVM. Then, the moisture diagnosis in the lab and field conditions is presented to verify its feasibility and accuracy. The novelty of this article is in an exploration of the reported model as an intelligent based moisture diagnosis tool for power transformers.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.3014224</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Diagnosis ; Dielectrics ; Frequency domain analysis ; Frequency-domain spectroscopy (FDS) ; genetic algorithm support vector machine (GA-SVM) ; Genetic algorithms ; Insulation ; Mathematical models ; Moisture ; moisture diagnosis ; Oil insulation ; oil-immersed insulation ; Parameters ; power transformer ; Power transformer insulation ; Service life ; Spectroscopy ; Spectrum analysis ; Support vector machines ; Transformers</subject><ispartof>IEEE transactions on industrial informatics, 2021-07, Vol.17 (7), p.4624-4634</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-5cc920ed612f332c22af602ca0d860c9b0f0cb79acea7bb3d9fad76ac82ac3883</citedby><cites>FETCH-LOGICAL-c380t-5cc920ed612f332c22af602ca0d860c9b0f0cb79acea7bb3d9fad76ac82ac3883</cites><orcidid>0000-0002-4169-4438 ; 0000-0003-0129-1252 ; 0000-0002-7660-7293 ; 0000-0003-4786-7931 ; 0000-0002-2283-8328 ; 0000-0001-8394-6659 ; 0000-0001-8785-126X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9157956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9157956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jiefeng</creatorcontrib><creatorcontrib>Fan, Xianhao</creatorcontrib><creatorcontrib>Zhang, Chaohai</creatorcontrib><creatorcontrib>Lai, Chun Sing</creatorcontrib><creatorcontrib>Zhang, Yiyi</creatorcontrib><creatorcontrib>Zheng, Hanbo</creatorcontrib><creatorcontrib>Lai, Loi Lei</creatorcontrib><creatorcontrib>Zhang, Enze</creatorcontrib><title>Moisture Diagnosis of Transformer Oil-Immersed Insulation With Intelligent Technique and Frequency-Domain Spectroscopy</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Moisture is one of the critical factors to determine the service life of transformers. The moisture inside the transformer oil-immersed insulation could be quantified with feature parameters. This article proposes and develops a genetic algorithm support vector machine (GA-SVM) model to carry out the moisture diagnosis. Present findings reveal that these feature parameters can be obtained by using frequency-domain spectroscopy. Therefore, a novel model for predicting the frequency-domain spectroscopy curves is first reported based on a small number of samples, which could be utilized to obtain the feature parameters database to develop GA-SVM. Then, the moisture diagnosis in the lab and field conditions is presented to verify its feasibility and accuracy. The novelty of this article is in an exploration of the reported model as an intelligent based moisture diagnosis tool for power transformers.</description><subject>Diagnosis</subject><subject>Dielectrics</subject><subject>Frequency domain analysis</subject><subject>Frequency-domain spectroscopy (FDS)</subject><subject>genetic algorithm support vector machine (GA-SVM)</subject><subject>Genetic algorithms</subject><subject>Insulation</subject><subject>Mathematical models</subject><subject>Moisture</subject><subject>moisture diagnosis</subject><subject>Oil insulation</subject><subject>oil-immersed insulation</subject><subject>Parameters</subject><subject>power transformer</subject><subject>Power transformer insulation</subject><subject>Service life</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><subject>Transformers</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYsoOKfvgi8Bnztvkn7lUabTwmQPVnwsaZpuGW1Sk1TYf2_Ghk_3XDjn3sMviu4xLDAG9lSV5YIAgQUFnBCSXEQzzBIcA6RwGXSa4pgSoNfRjXN7AJoDZbPo98Mo5ycr0YviW22ccsh0qLJcu87YQVq0UX1cDkE52aJSu6nnXhmNvpXfhd3LvldbqT2qpNhp9TNJxHWLVlYGqcUhfjEDVxp9jlJ4a5ww4-E2uup47-Tdec6jr9VrtXyP15u3cvm8jgUtwMepEIyAbDNMOkqJIIR3GRDBoS0yEKyBDkSTMy4kz5uGtqzjbZ5xURAeLhR0Hj2e7o7WhDbO13szWR1e1iTFkFDIaBJccHKJUM9Z2dWjVQO3hxpDfaRbB7r1kW59phsiD6eIklL-2xlOc5Zm9A8OAHiO</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Liu, Jiefeng</creator><creator>Fan, Xianhao</creator><creator>Zhang, Chaohai</creator><creator>Lai, Chun Sing</creator><creator>Zhang, Yiyi</creator><creator>Zheng, Hanbo</creator><creator>Lai, Loi Lei</creator><creator>Zhang, Enze</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4169-4438</orcidid><orcidid>https://orcid.org/0000-0003-0129-1252</orcidid><orcidid>https://orcid.org/0000-0002-7660-7293</orcidid><orcidid>https://orcid.org/0000-0003-4786-7931</orcidid><orcidid>https://orcid.org/0000-0002-2283-8328</orcidid><orcidid>https://orcid.org/0000-0001-8394-6659</orcidid><orcidid>https://orcid.org/0000-0001-8785-126X</orcidid></search><sort><creationdate>20210701</creationdate><title>Moisture Diagnosis of Transformer Oil-Immersed Insulation With Intelligent Technique and Frequency-Domain Spectroscopy</title><author>Liu, Jiefeng ; Fan, Xianhao ; Zhang, Chaohai ; Lai, Chun Sing ; Zhang, Yiyi ; Zheng, Hanbo ; Lai, Loi Lei ; Zhang, Enze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-5cc920ed612f332c22af602ca0d860c9b0f0cb79acea7bb3d9fad76ac82ac3883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Diagnosis</topic><topic>Dielectrics</topic><topic>Frequency domain analysis</topic><topic>Frequency-domain spectroscopy (FDS)</topic><topic>genetic algorithm support vector machine (GA-SVM)</topic><topic>Genetic algorithms</topic><topic>Insulation</topic><topic>Mathematical models</topic><topic>Moisture</topic><topic>moisture diagnosis</topic><topic>Oil insulation</topic><topic>oil-immersed insulation</topic><topic>Parameters</topic><topic>power transformer</topic><topic>Power transformer insulation</topic><topic>Service life</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiefeng</creatorcontrib><creatorcontrib>Fan, Xianhao</creatorcontrib><creatorcontrib>Zhang, Chaohai</creatorcontrib><creatorcontrib>Lai, Chun Sing</creatorcontrib><creatorcontrib>Zhang, Yiyi</creatorcontrib><creatorcontrib>Zheng, Hanbo</creatorcontrib><creatorcontrib>Lai, Loi Lei</creatorcontrib><creatorcontrib>Zhang, Enze</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jiefeng</au><au>Fan, Xianhao</au><au>Zhang, Chaohai</au><au>Lai, Chun Sing</au><au>Zhang, Yiyi</au><au>Zheng, Hanbo</au><au>Lai, Loi Lei</au><au>Zhang, Enze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moisture Diagnosis of Transformer Oil-Immersed Insulation With Intelligent Technique and Frequency-Domain Spectroscopy</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>4624</spage><epage>4634</epage><pages>4624-4634</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Moisture is one of the critical factors to determine the service life of transformers. The moisture inside the transformer oil-immersed insulation could be quantified with feature parameters. This article proposes and develops a genetic algorithm support vector machine (GA-SVM) model to carry out the moisture diagnosis. Present findings reveal that these feature parameters can be obtained by using frequency-domain spectroscopy. Therefore, a novel model for predicting the frequency-domain spectroscopy curves is first reported based on a small number of samples, which could be utilized to obtain the feature parameters database to develop GA-SVM. Then, the moisture diagnosis in the lab and field conditions is presented to verify its feasibility and accuracy. The novelty of this article is in an exploration of the reported model as an intelligent based moisture diagnosis tool for power transformers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.3014224</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4169-4438</orcidid><orcidid>https://orcid.org/0000-0003-0129-1252</orcidid><orcidid>https://orcid.org/0000-0002-7660-7293</orcidid><orcidid>https://orcid.org/0000-0003-4786-7931</orcidid><orcidid>https://orcid.org/0000-0002-2283-8328</orcidid><orcidid>https://orcid.org/0000-0001-8394-6659</orcidid><orcidid>https://orcid.org/0000-0001-8785-126X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2021-07, Vol.17 (7), p.4624-4634
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2510430634
source IEEE Electronic Library (IEL)
subjects Diagnosis
Dielectrics
Frequency domain analysis
Frequency-domain spectroscopy (FDS)
genetic algorithm support vector machine (GA-SVM)
Genetic algorithms
Insulation
Mathematical models
Moisture
moisture diagnosis
Oil insulation
oil-immersed insulation
Parameters
power transformer
Power transformer insulation
Service life
Spectroscopy
Spectrum analysis
Support vector machines
Transformers
title Moisture Diagnosis of Transformer Oil-Immersed Insulation With Intelligent Technique and Frequency-Domain Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moisture%20Diagnosis%20of%20Transformer%20Oil-Immersed%20Insulation%20With%20Intelligent%20Technique%20and%20Frequency-Domain%20Spectroscopy&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Jiefeng&rft.date=2021-07-01&rft.volume=17&rft.issue=7&rft.spage=4624&rft.epage=4634&rft.pages=4624-4634&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.3014224&rft_dat=%3Cproquest_RIE%3E2510430634%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510430634&rft_id=info:pmid/&rft_ieee_id=9157956&rfr_iscdi=true