Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet

The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate traged...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2021-07, Vol.17 (7), p.4635-4645
Hauptverfasser: Zhang, Xiaogang, Lei, Yanying, Chen, Hua, Zhang, Lei, Zhou, Yicong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4645
container_issue 7
container_start_page 4635
container_title IEEE transactions on industrial informatics
container_volume 17
creator Zhang, Xiaogang
Lei, Yanying
Chen, Hua
Zhang, Lei
Zhou, Yicong
description The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate tragedies. In this article, we propose a deep learning model for forecasting the ST using automatic spatiotemporal feature extraction from multivariate thermal time series. A hybrid deep neural network named deep convolutional neural network and gated recurrent unit network (DCGNet) is designed to extract multivariate coupling and nonlinear dynamic characteristics for forecasting the ST. DCGNet uses convolutional neural networks and gated recurrent unit (GRU) to extract the local spatial-temporal dependence patterns among the multivariates, and another parallel GRU using the historical ST data as input is incorporated to more accurately capture the dynamic characteristics of ST time series. Based on the real-world data, application results show that the proposed approach has high forecasting accuracy and robustness, thus having broad application prospects in industrial processes.
doi_str_mv 10.1109/TII.2020.3022019
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2510429032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186828</ieee_id><sourcerecordid>2510429032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-888809a531103d9955ffe5087fbaed561560c7854f390dfa1215e9a9fc6b87a43</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoqNN3wZeCz52XpGmTR5luDjcF1z2XrL1IRtfOJBX8783Y8F7uDj7f-_El5I7CmFJQj-V8PmbAYMyBMaDqjFxRldEUQMB5rIWgKWfAL8m191sAXgBXV6RZDm2wP9pZHTAp7Q7TFTqLPln2Dba2-0pM75Jp77DWPhz6le1CRGJV4m6PTofBYWK75LMP2v0mb7btfLL2B-J5MnvHcEMujG493p7yiKynL-XkNV18zOaTp0Vacy5DKmOA0oLHh3ijlBDGoABZmI3GRuRU5FAXUmSGK2iMpowKVFqZOt_IQmd8RB6Oc_eu_x7Qh2rbD66LKysmKGRMAWeRgiNVu957h6baO7uLl1cUqoOXVfSyOnhZnbyMkvujxCLiP66ozCWT_A-qXG9e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510429032</pqid></control><display><type>article</type><title>Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet</title><source>IEEE Xplore Digital Library</source><creator>Zhang, Xiaogang ; Lei, Yanying ; Chen, Hua ; Zhang, Lei ; Zhou, Yicong</creator><creatorcontrib>Zhang, Xiaogang ; Lei, Yanying ; Chen, Hua ; Zhang, Lei ; Zhou, Yicong</creatorcontrib><description>The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate tragedies. In this article, we propose a deep learning model for forecasting the ST using automatic spatiotemporal feature extraction from multivariate thermal time series. A hybrid deep neural network named deep convolutional neural network and gated recurrent unit network (DCGNet) is designed to extract multivariate coupling and nonlinear dynamic characteristics for forecasting the ST. DCGNet uses convolutional neural networks and gated recurrent unit (GRU) to extract the local spatial-temporal dependence patterns among the multivariates, and another parallel GRU using the historical ST data as input is incorporated to more accurately capture the dynamic characteristics of ST time series. Based on the real-world data, application results show that the proposed approach has high forecasting accuracy and robustness, thus having broad application prospects in industrial processes.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.3022019</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aluminum ; Artificial neural networks ; Condition monitoring ; Control equipment ; Convolutional neural network (CNN) ; Couplings ; Data mining ; Dynamic characteristics ; Dynamical systems ; Feature extraction ; Forecasting ; gated recurrent unit (GRU) network ; Kilns ; Machine learning ; Mathematical models ; Multivariate analysis ; multivariate time series ; Neural networks ; Nonlinear dynamics ; Predictive models ; Process controls ; Rotary kilns ; Sintering ; temperature forecasting ; Time series ; Time series analysis ; Weather forecasting</subject><ispartof>IEEE transactions on industrial informatics, 2021-07, Vol.17 (7), p.4635-4645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-888809a531103d9955ffe5087fbaed561560c7854f390dfa1215e9a9fc6b87a43</citedby><cites>FETCH-LOGICAL-c338t-888809a531103d9955ffe5087fbaed561560c7854f390dfa1215e9a9fc6b87a43</cites><orcidid>0000-0002-1563-5274 ; 0000-0002-8994-1880 ; 0000-0002-4487-6384 ; 0000-0002-2576-2576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9186828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9186828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiaogang</creatorcontrib><creatorcontrib>Lei, Yanying</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhou, Yicong</creatorcontrib><title>Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate tragedies. In this article, we propose a deep learning model for forecasting the ST using automatic spatiotemporal feature extraction from multivariate thermal time series. A hybrid deep neural network named deep convolutional neural network and gated recurrent unit network (DCGNet) is designed to extract multivariate coupling and nonlinear dynamic characteristics for forecasting the ST. DCGNet uses convolutional neural networks and gated recurrent unit (GRU) to extract the local spatial-temporal dependence patterns among the multivariates, and another parallel GRU using the historical ST data as input is incorporated to more accurately capture the dynamic characteristics of ST time series. Based on the real-world data, application results show that the proposed approach has high forecasting accuracy and robustness, thus having broad application prospects in industrial processes.</description><subject>Aluminum</subject><subject>Artificial neural networks</subject><subject>Condition monitoring</subject><subject>Control equipment</subject><subject>Convolutional neural network (CNN)</subject><subject>Couplings</subject><subject>Data mining</subject><subject>Dynamic characteristics</subject><subject>Dynamical systems</subject><subject>Feature extraction</subject><subject>Forecasting</subject><subject>gated recurrent unit (GRU) network</subject><subject>Kilns</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>multivariate time series</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Predictive models</subject><subject>Process controls</subject><subject>Rotary kilns</subject><subject>Sintering</subject><subject>temperature forecasting</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Weather forecasting</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoqNN3wZeCz52XpGmTR5luDjcF1z2XrL1IRtfOJBX8783Y8F7uDj7f-_El5I7CmFJQj-V8PmbAYMyBMaDqjFxRldEUQMB5rIWgKWfAL8m191sAXgBXV6RZDm2wP9pZHTAp7Q7TFTqLPln2Dba2-0pM75Jp77DWPhz6le1CRGJV4m6PTofBYWK75LMP2v0mb7btfLL2B-J5MnvHcEMujG493p7yiKynL-XkNV18zOaTp0Vacy5DKmOA0oLHh3ijlBDGoABZmI3GRuRU5FAXUmSGK2iMpowKVFqZOt_IQmd8RB6Oc_eu_x7Qh2rbD66LKysmKGRMAWeRgiNVu957h6baO7uLl1cUqoOXVfSyOnhZnbyMkvujxCLiP66ozCWT_A-qXG9e</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Zhang, Xiaogang</creator><creator>Lei, Yanying</creator><creator>Chen, Hua</creator><creator>Zhang, Lei</creator><creator>Zhou, Yicong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1563-5274</orcidid><orcidid>https://orcid.org/0000-0002-8994-1880</orcidid><orcidid>https://orcid.org/0000-0002-4487-6384</orcidid><orcidid>https://orcid.org/0000-0002-2576-2576</orcidid></search><sort><creationdate>20210701</creationdate><title>Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet</title><author>Zhang, Xiaogang ; Lei, Yanying ; Chen, Hua ; Zhang, Lei ; Zhou, Yicong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-888809a531103d9955ffe5087fbaed561560c7854f390dfa1215e9a9fc6b87a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Artificial neural networks</topic><topic>Condition monitoring</topic><topic>Control equipment</topic><topic>Convolutional neural network (CNN)</topic><topic>Couplings</topic><topic>Data mining</topic><topic>Dynamic characteristics</topic><topic>Dynamical systems</topic><topic>Feature extraction</topic><topic>Forecasting</topic><topic>gated recurrent unit (GRU) network</topic><topic>Kilns</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>multivariate time series</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Predictive models</topic><topic>Process controls</topic><topic>Rotary kilns</topic><topic>Sintering</topic><topic>temperature forecasting</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaogang</creatorcontrib><creatorcontrib>Lei, Yanying</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhou, Yicong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiaogang</au><au>Lei, Yanying</au><au>Chen, Hua</au><au>Zhang, Lei</au><au>Zhou, Yicong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>4635</spage><epage>4645</epage><pages>4635-4645</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate tragedies. In this article, we propose a deep learning model for forecasting the ST using automatic spatiotemporal feature extraction from multivariate thermal time series. A hybrid deep neural network named deep convolutional neural network and gated recurrent unit network (DCGNet) is designed to extract multivariate coupling and nonlinear dynamic characteristics for forecasting the ST. DCGNet uses convolutional neural networks and gated recurrent unit (GRU) to extract the local spatial-temporal dependence patterns among the multivariates, and another parallel GRU using the historical ST data as input is incorporated to more accurately capture the dynamic characteristics of ST time series. Based on the real-world data, application results show that the proposed approach has high forecasting accuracy and robustness, thus having broad application prospects in industrial processes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.3022019</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1563-5274</orcidid><orcidid>https://orcid.org/0000-0002-8994-1880</orcidid><orcidid>https://orcid.org/0000-0002-4487-6384</orcidid><orcidid>https://orcid.org/0000-0002-2576-2576</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2021-07, Vol.17 (7), p.4635-4645
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2510429032
source IEEE Xplore Digital Library
subjects Aluminum
Artificial neural networks
Condition monitoring
Control equipment
Convolutional neural network (CNN)
Couplings
Data mining
Dynamic characteristics
Dynamical systems
Feature extraction
Forecasting
gated recurrent unit (GRU) network
Kilns
Machine learning
Mathematical models
Multivariate analysis
multivariate time series
Neural networks
Nonlinear dynamics
Predictive models
Process controls
Rotary kilns
Sintering
temperature forecasting
Time series
Time series analysis
Weather forecasting
title Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Time-Series%20Modeling%20for%20Forecasting%20Sintering%20Temperature%20in%20Rotary%20Kilns%20Using%20DCGNet&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhang,%20Xiaogang&rft.date=2021-07-01&rft.volume=17&rft.issue=7&rft.spage=4635&rft.epage=4645&rft.pages=4635-4645&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.3022019&rft_dat=%3Cproquest_RIE%3E2510429032%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510429032&rft_id=info:pmid/&rft_ieee_id=9186828&rfr_iscdi=true