Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet
The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate traged...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2021-07, Vol.17 (7), p.4635-4645 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4645 |
---|---|
container_issue | 7 |
container_start_page | 4635 |
container_title | IEEE transactions on industrial informatics |
container_volume | 17 |
creator | Zhang, Xiaogang Lei, Yanying Chen, Hua Zhang, Lei Zhou, Yicong |
description | The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate tragedies. In this article, we propose a deep learning model for forecasting the ST using automatic spatiotemporal feature extraction from multivariate thermal time series. A hybrid deep neural network named deep convolutional neural network and gated recurrent unit network (DCGNet) is designed to extract multivariate coupling and nonlinear dynamic characteristics for forecasting the ST. DCGNet uses convolutional neural networks and gated recurrent unit (GRU) to extract the local spatial-temporal dependence patterns among the multivariates, and another parallel GRU using the historical ST data as input is incorporated to more accurately capture the dynamic characteristics of ST time series. Based on the real-world data, application results show that the proposed approach has high forecasting accuracy and robustness, thus having broad application prospects in industrial processes. |
doi_str_mv | 10.1109/TII.2020.3022019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2510429032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186828</ieee_id><sourcerecordid>2510429032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-888809a531103d9955ffe5087fbaed561560c7854f390dfa1215e9a9fc6b87a43</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoqNN3wZeCz52XpGmTR5luDjcF1z2XrL1IRtfOJBX8783Y8F7uDj7f-_El5I7CmFJQj-V8PmbAYMyBMaDqjFxRldEUQMB5rIWgKWfAL8m191sAXgBXV6RZDm2wP9pZHTAp7Q7TFTqLPln2Dba2-0pM75Jp77DWPhz6le1CRGJV4m6PTofBYWK75LMP2v0mb7btfLL2B-J5MnvHcEMujG493p7yiKynL-XkNV18zOaTp0Vacy5DKmOA0oLHh3ijlBDGoABZmI3GRuRU5FAXUmSGK2iMpowKVFqZOt_IQmd8RB6Oc_eu_x7Qh2rbD66LKysmKGRMAWeRgiNVu957h6baO7uLl1cUqoOXVfSyOnhZnbyMkvujxCLiP66ozCWT_A-qXG9e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510429032</pqid></control><display><type>article</type><title>Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet</title><source>IEEE Xplore Digital Library</source><creator>Zhang, Xiaogang ; Lei, Yanying ; Chen, Hua ; Zhang, Lei ; Zhou, Yicong</creator><creatorcontrib>Zhang, Xiaogang ; Lei, Yanying ; Chen, Hua ; Zhang, Lei ; Zhou, Yicong</creatorcontrib><description>The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate tragedies. In this article, we propose a deep learning model for forecasting the ST using automatic spatiotemporal feature extraction from multivariate thermal time series. A hybrid deep neural network named deep convolutional neural network and gated recurrent unit network (DCGNet) is designed to extract multivariate coupling and nonlinear dynamic characteristics for forecasting the ST. DCGNet uses convolutional neural networks and gated recurrent unit (GRU) to extract the local spatial-temporal dependence patterns among the multivariates, and another parallel GRU using the historical ST data as input is incorporated to more accurately capture the dynamic characteristics of ST time series. Based on the real-world data, application results show that the proposed approach has high forecasting accuracy and robustness, thus having broad application prospects in industrial processes.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.3022019</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aluminum ; Artificial neural networks ; Condition monitoring ; Control equipment ; Convolutional neural network (CNN) ; Couplings ; Data mining ; Dynamic characteristics ; Dynamical systems ; Feature extraction ; Forecasting ; gated recurrent unit (GRU) network ; Kilns ; Machine learning ; Mathematical models ; Multivariate analysis ; multivariate time series ; Neural networks ; Nonlinear dynamics ; Predictive models ; Process controls ; Rotary kilns ; Sintering ; temperature forecasting ; Time series ; Time series analysis ; Weather forecasting</subject><ispartof>IEEE transactions on industrial informatics, 2021-07, Vol.17 (7), p.4635-4645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-888809a531103d9955ffe5087fbaed561560c7854f390dfa1215e9a9fc6b87a43</citedby><cites>FETCH-LOGICAL-c338t-888809a531103d9955ffe5087fbaed561560c7854f390dfa1215e9a9fc6b87a43</cites><orcidid>0000-0002-1563-5274 ; 0000-0002-8994-1880 ; 0000-0002-4487-6384 ; 0000-0002-2576-2576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9186828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9186828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiaogang</creatorcontrib><creatorcontrib>Lei, Yanying</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhou, Yicong</creatorcontrib><title>Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate tragedies. In this article, we propose a deep learning model for forecasting the ST using automatic spatiotemporal feature extraction from multivariate thermal time series. A hybrid deep neural network named deep convolutional neural network and gated recurrent unit network (DCGNet) is designed to extract multivariate coupling and nonlinear dynamic characteristics for forecasting the ST. DCGNet uses convolutional neural networks and gated recurrent unit (GRU) to extract the local spatial-temporal dependence patterns among the multivariates, and another parallel GRU using the historical ST data as input is incorporated to more accurately capture the dynamic characteristics of ST time series. Based on the real-world data, application results show that the proposed approach has high forecasting accuracy and robustness, thus having broad application prospects in industrial processes.</description><subject>Aluminum</subject><subject>Artificial neural networks</subject><subject>Condition monitoring</subject><subject>Control equipment</subject><subject>Convolutional neural network (CNN)</subject><subject>Couplings</subject><subject>Data mining</subject><subject>Dynamic characteristics</subject><subject>Dynamical systems</subject><subject>Feature extraction</subject><subject>Forecasting</subject><subject>gated recurrent unit (GRU) network</subject><subject>Kilns</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>multivariate time series</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Predictive models</subject><subject>Process controls</subject><subject>Rotary kilns</subject><subject>Sintering</subject><subject>temperature forecasting</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Weather forecasting</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoqNN3wZeCz52XpGmTR5luDjcF1z2XrL1IRtfOJBX8783Y8F7uDj7f-_El5I7CmFJQj-V8PmbAYMyBMaDqjFxRldEUQMB5rIWgKWfAL8m191sAXgBXV6RZDm2wP9pZHTAp7Q7TFTqLPln2Dba2-0pM75Jp77DWPhz6le1CRGJV4m6PTofBYWK75LMP2v0mb7btfLL2B-J5MnvHcEMujG493p7yiKynL-XkNV18zOaTp0Vacy5DKmOA0oLHh3ijlBDGoABZmI3GRuRU5FAXUmSGK2iMpowKVFqZOt_IQmd8RB6Oc_eu_x7Qh2rbD66LKysmKGRMAWeRgiNVu957h6baO7uLl1cUqoOXVfSyOnhZnbyMkvujxCLiP66ozCWT_A-qXG9e</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Zhang, Xiaogang</creator><creator>Lei, Yanying</creator><creator>Chen, Hua</creator><creator>Zhang, Lei</creator><creator>Zhou, Yicong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1563-5274</orcidid><orcidid>https://orcid.org/0000-0002-8994-1880</orcidid><orcidid>https://orcid.org/0000-0002-4487-6384</orcidid><orcidid>https://orcid.org/0000-0002-2576-2576</orcidid></search><sort><creationdate>20210701</creationdate><title>Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet</title><author>Zhang, Xiaogang ; Lei, Yanying ; Chen, Hua ; Zhang, Lei ; Zhou, Yicong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-888809a531103d9955ffe5087fbaed561560c7854f390dfa1215e9a9fc6b87a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Artificial neural networks</topic><topic>Condition monitoring</topic><topic>Control equipment</topic><topic>Convolutional neural network (CNN)</topic><topic>Couplings</topic><topic>Data mining</topic><topic>Dynamic characteristics</topic><topic>Dynamical systems</topic><topic>Feature extraction</topic><topic>Forecasting</topic><topic>gated recurrent unit (GRU) network</topic><topic>Kilns</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>multivariate time series</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Predictive models</topic><topic>Process controls</topic><topic>Rotary kilns</topic><topic>Sintering</topic><topic>temperature forecasting</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaogang</creatorcontrib><creatorcontrib>Lei, Yanying</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhou, Yicong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiaogang</au><au>Lei, Yanying</au><au>Chen, Hua</au><au>Zhang, Lei</au><au>Zhou, Yicong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>4635</spage><epage>4645</epage><pages>4635-4645</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate tragedies. In this article, we propose a deep learning model for forecasting the ST using automatic spatiotemporal feature extraction from multivariate thermal time series. A hybrid deep neural network named deep convolutional neural network and gated recurrent unit network (DCGNet) is designed to extract multivariate coupling and nonlinear dynamic characteristics for forecasting the ST. DCGNet uses convolutional neural networks and gated recurrent unit (GRU) to extract the local spatial-temporal dependence patterns among the multivariates, and another parallel GRU using the historical ST data as input is incorporated to more accurately capture the dynamic characteristics of ST time series. Based on the real-world data, application results show that the proposed approach has high forecasting accuracy and robustness, thus having broad application prospects in industrial processes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.3022019</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1563-5274</orcidid><orcidid>https://orcid.org/0000-0002-8994-1880</orcidid><orcidid>https://orcid.org/0000-0002-4487-6384</orcidid><orcidid>https://orcid.org/0000-0002-2576-2576</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2021-07, Vol.17 (7), p.4635-4645 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2510429032 |
source | IEEE Xplore Digital Library |
subjects | Aluminum Artificial neural networks Condition monitoring Control equipment Convolutional neural network (CNN) Couplings Data mining Dynamic characteristics Dynamical systems Feature extraction Forecasting gated recurrent unit (GRU) network Kilns Machine learning Mathematical models Multivariate analysis multivariate time series Neural networks Nonlinear dynamics Predictive models Process controls Rotary kilns Sintering temperature forecasting Time series Time series analysis Weather forecasting |
title | Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Time-Series%20Modeling%20for%20Forecasting%20Sintering%20Temperature%20in%20Rotary%20Kilns%20Using%20DCGNet&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhang,%20Xiaogang&rft.date=2021-07-01&rft.volume=17&rft.issue=7&rft.spage=4635&rft.epage=4645&rft.pages=4635-4645&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.3022019&rft_dat=%3Cproquest_RIE%3E2510429032%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510429032&rft_id=info:pmid/&rft_ieee_id=9186828&rfr_iscdi=true |