Auto Neural Architecture Generator for UAV-Based Geospatial Surveillance for Aerial Crisis Mapping in Dark

Natural disasters such as flood, tsunami, earthquake and cyclones usually influence the microspaces and in urban areas, thereby causing the problem to rescuers to make way to the victims. Rescue operations in these situations are also hampered due to darkness caused by power cut and unavailability o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2021-03, Vol.49 (3), p.507-514
Hauptverfasser: Rai, Ankush, Kannan, R. Jagadeesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 3
container_start_page 507
container_title Journal of the Indian Society of Remote Sensing
container_volume 49
creator Rai, Ankush
Kannan, R. Jagadeesh
description Natural disasters such as flood, tsunami, earthquake and cyclones usually influence the microspaces and in urban areas, thereby causing the problem to rescuers to make way to the victims. Rescue operations in these situations are also hampered due to darkness caused by power cut and unavailability of other light sources to rescue people in peril or to even carry out evacuation operations. Therefore, we need solution to map all the essential large-scale feature spaces in dark to avail safety and saving numerous lives in disaster environments. This study presents a soft framework for crisis mapping in dark to map aerial view of geo-specific terrain in disaster struck areas so that effective map of debris and localization of victims can be achieved to enable strategic planning of rescue operations.
doi_str_mv 10.1007/s12524-020-01236-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510297820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510297820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-92fef65f0b43273876d0f082803895020c1854c530a3ff86cb7c6cf8fa1854693</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOduw4YyhQkAoMUMRmua5dXEIS7ASp_x6XIrExnO709L073UPolMA5ASguIqGc5hgoYCCUCbzZQyMoixwzALGfZso5FgJeD9FRjOsk5pzQEVpXQ99mD3YIus6qYN58b00_BJtNbWOD7tuQuVTz6gVf6miXSW9jp3uf-KchfFlf17ox9oeqbNjqk-Cjj9m97jrfrDLfZFc6vB-jA6fraE9--xjNb66fJ7d49ji9m1QzbGgBPS6ps05wB4uc0YLJQizBgaQSmCx5-tAQyXPDGWjmnBRmURhhnHR6q4uSjdHZbm8X2s_Bxl6t2yE06aSinAAtC0khUXRHmdDGGKxTXfAfOmwUAbXNVO0yVemi-slUbZKJ7Uwxwc3Khr_V_7i-AQGEeW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510297820</pqid></control><display><type>article</type><title>Auto Neural Architecture Generator for UAV-Based Geospatial Surveillance for Aerial Crisis Mapping in Dark</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rai, Ankush ; Kannan, R. Jagadeesh</creator><creatorcontrib>Rai, Ankush ; Kannan, R. Jagadeesh</creatorcontrib><description>Natural disasters such as flood, tsunami, earthquake and cyclones usually influence the microspaces and in urban areas, thereby causing the problem to rescuers to make way to the victims. Rescue operations in these situations are also hampered due to darkness caused by power cut and unavailability of other light sources to rescue people in peril or to even carry out evacuation operations. Therefore, we need solution to map all the essential large-scale feature spaces in dark to avail safety and saving numerous lives in disaster environments. This study presents a soft framework for crisis mapping in dark to map aerial view of geo-specific terrain in disaster struck areas so that effective map of debris and localization of victims can be achieved to enable strategic planning of rescue operations.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-020-01236-y</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Cyclones ; Darkness ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Flood mapping ; Light sources ; Natural disasters ; Remote Sensing/Photogrammetry ; Rescue operations ; Research Article ; Seismic activity ; Unmanned aerial vehicles ; Urban areas</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2021-03, Vol.49 (3), p.507-514</ispartof><rights>Indian Society of Remote Sensing 2020</rights><rights>Indian Society of Remote Sensing 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-92fef65f0b43273876d0f082803895020c1854c530a3ff86cb7c6cf8fa1854693</cites><orcidid>0000-0002-5512-9966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-020-01236-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-020-01236-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Rai, Ankush</creatorcontrib><creatorcontrib>Kannan, R. Jagadeesh</creatorcontrib><title>Auto Neural Architecture Generator for UAV-Based Geospatial Surveillance for Aerial Crisis Mapping in Dark</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>Natural disasters such as flood, tsunami, earthquake and cyclones usually influence the microspaces and in urban areas, thereby causing the problem to rescuers to make way to the victims. Rescue operations in these situations are also hampered due to darkness caused by power cut and unavailability of other light sources to rescue people in peril or to even carry out evacuation operations. Therefore, we need solution to map all the essential large-scale feature spaces in dark to avail safety and saving numerous lives in disaster environments. This study presents a soft framework for crisis mapping in dark to map aerial view of geo-specific terrain in disaster struck areas so that effective map of debris and localization of victims can be achieved to enable strategic planning of rescue operations.</description><subject>Cyclones</subject><subject>Darkness</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Flood mapping</subject><subject>Light sources</subject><subject>Natural disasters</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Rescue operations</subject><subject>Research Article</subject><subject>Seismic activity</subject><subject>Unmanned aerial vehicles</subject><subject>Urban areas</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOduw4YyhQkAoMUMRmua5dXEIS7ASp_x6XIrExnO709L073UPolMA5ASguIqGc5hgoYCCUCbzZQyMoixwzALGfZso5FgJeD9FRjOsk5pzQEVpXQ99mD3YIus6qYN58b00_BJtNbWOD7tuQuVTz6gVf6miXSW9jp3uf-KchfFlf17ox9oeqbNjqk-Cjj9m97jrfrDLfZFc6vB-jA6fraE9--xjNb66fJ7d49ji9m1QzbGgBPS6ps05wB4uc0YLJQizBgaQSmCx5-tAQyXPDGWjmnBRmURhhnHR6q4uSjdHZbm8X2s_Bxl6t2yE06aSinAAtC0khUXRHmdDGGKxTXfAfOmwUAbXNVO0yVemi-slUbZKJ7Uwxwc3Khr_V_7i-AQGEeW8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Rai, Ankush</creator><creator>Kannan, R. Jagadeesh</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5512-9966</orcidid></search><sort><creationdate>20210301</creationdate><title>Auto Neural Architecture Generator for UAV-Based Geospatial Surveillance for Aerial Crisis Mapping in Dark</title><author>Rai, Ankush ; Kannan, R. Jagadeesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-92fef65f0b43273876d0f082803895020c1854c530a3ff86cb7c6cf8fa1854693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cyclones</topic><topic>Darkness</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Flood mapping</topic><topic>Light sources</topic><topic>Natural disasters</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Rescue operations</topic><topic>Research Article</topic><topic>Seismic activity</topic><topic>Unmanned aerial vehicles</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rai, Ankush</creatorcontrib><creatorcontrib>Kannan, R. Jagadeesh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rai, Ankush</au><au>Kannan, R. Jagadeesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auto Neural Architecture Generator for UAV-Based Geospatial Surveillance for Aerial Crisis Mapping in Dark</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>49</volume><issue>3</issue><spage>507</spage><epage>514</epage><pages>507-514</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>Natural disasters such as flood, tsunami, earthquake and cyclones usually influence the microspaces and in urban areas, thereby causing the problem to rescuers to make way to the victims. Rescue operations in these situations are also hampered due to darkness caused by power cut and unavailability of other light sources to rescue people in peril or to even carry out evacuation operations. Therefore, we need solution to map all the essential large-scale feature spaces in dark to avail safety and saving numerous lives in disaster environments. This study presents a soft framework for crisis mapping in dark to map aerial view of geo-specific terrain in disaster struck areas so that effective map of debris and localization of victims can be achieved to enable strategic planning of rescue operations.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-020-01236-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5512-9966</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0255-660X
ispartof Journal of the Indian Society of Remote Sensing, 2021-03, Vol.49 (3), p.507-514
issn 0255-660X
0974-3006
language eng
recordid cdi_proquest_journals_2510297820
source SpringerLink Journals - AutoHoldings
subjects Cyclones
Darkness
Earth and Environmental Science
Earth Sciences
Earthquakes
Flood mapping
Light sources
Natural disasters
Remote Sensing/Photogrammetry
Rescue operations
Research Article
Seismic activity
Unmanned aerial vehicles
Urban areas
title Auto Neural Architecture Generator for UAV-Based Geospatial Surveillance for Aerial Crisis Mapping in Dark
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auto%20Neural%20Architecture%20Generator%20for%20UAV-Based%20Geospatial%20Surveillance%20for%20Aerial%20Crisis%20Mapping%20in%20Dark&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Rai,%20Ankush&rft.date=2021-03-01&rft.volume=49&rft.issue=3&rft.spage=507&rft.epage=514&rft.pages=507-514&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-020-01236-y&rft_dat=%3Cproquest_cross%3E2510297820%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510297820&rft_id=info:pmid/&rfr_iscdi=true