Neural attention model for recommendation based on factorization machines
In recommendation systems, it is of vital importance to comprehensively consider various aspects of information to make accurate recommendations for users. When the low-order feature interactions between items are insufficient, it is necessary to mine information to learn higher-order feature intera...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2021-04, Vol.51 (4), p.1829-1844 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1844 |
---|---|
container_issue | 4 |
container_start_page | 1829 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 51 |
creator | Wen, Peng Yuan, Weihua Qin, Qianqian Sang, Sheng Zhang, Zhijun |
description | In recommendation systems, it is of vital importance to comprehensively consider various aspects of information to make accurate recommendations for users. When the low-order feature interactions between items are insufficient, it is necessary to mine information to learn higher-order feature interactions. In addition, to distinguish the different importance levels of feature interactions, larger weights should be assigned to features with larger contributions to predictions, and smaller weights to those with smaller contributions. Therefore, this paper proposes a neural attention model for recommendation (NAM), which deepens factorization machines (FMs) by adding an attention mechanism and fully connected layers. Through the attention mechanism, NAM can learn the different importance levels of low-order feature interactions. By adding fully connected layers on top of the attention component, NAM can model high-order feature interactions in a nonlinear way. Experiments on two real-world datasets demonstrate that NAM has excellent performance and is superior to FM and other state-of-the-art models. The results demonstrate the effectiveness of the proposed model and the potential of using neural networks for prediction under sparse data. |
doi_str_mv | 10.1007/s10489-020-01921-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509913922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509913922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d7445f8e0c1bca91d377e7cde8b2d0c8255025eff6c425ff5ac6497a89d9618d3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hxwkqZpjmjiz6QJLiBxi7LEgU5rM5L2MD49ZUXixsmW_d6z_CPkksE1A1A3mUFZawocKDDNGd0fkRmTSlBVanVMZqB5SatKv52Ss5w3ACAEsBlZPuGQ7LawfY9d38SuaKPHbRFiKhK62LbYeXtYrG1GX4xNsK6Pqfmaxq11H02H-ZycBLvNePFb5-T1_u5l8UhXzw_Lxe2KOsF0T70qSxlqBMfWzmrmhVKonMd6zT24mksJXGIIlSu5DEFaV40v2Fp7XbHaizm5mnJ3KX4OmHuziUPqxpOGS9CaCc35qOKTyqWYc8JgdqlpbdobBuYHmZmQmRGZOSAz-9EkJlMexd07pr_of1zfGspwXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509913922</pqid></control><display><type>article</type><title>Neural attention model for recommendation based on factorization machines</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wen, Peng ; Yuan, Weihua ; Qin, Qianqian ; Sang, Sheng ; Zhang, Zhijun</creator><creatorcontrib>Wen, Peng ; Yuan, Weihua ; Qin, Qianqian ; Sang, Sheng ; Zhang, Zhijun</creatorcontrib><description>In recommendation systems, it is of vital importance to comprehensively consider various aspects of information to make accurate recommendations for users. When the low-order feature interactions between items are insufficient, it is necessary to mine information to learn higher-order feature interactions. In addition, to distinguish the different importance levels of feature interactions, larger weights should be assigned to features with larger contributions to predictions, and smaller weights to those with smaller contributions. Therefore, this paper proposes a neural attention model for recommendation (NAM), which deepens factorization machines (FMs) by adding an attention mechanism and fully connected layers. Through the attention mechanism, NAM can learn the different importance levels of low-order feature interactions. By adding fully connected layers on top of the attention component, NAM can model high-order feature interactions in a nonlinear way. Experiments on two real-world datasets demonstrate that NAM has excellent performance and is superior to FM and other state-of-the-art models. The results demonstrate the effectiveness of the proposed model and the potential of using neural networks for prediction under sparse data.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-020-01921-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Factorization ; Machines ; Manufacturing ; Mechanical Engineering ; Neural networks ; Processes ; Recommender systems</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2021-04, Vol.51 (4), p.1829-1844</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d7445f8e0c1bca91d377e7cde8b2d0c8255025eff6c425ff5ac6497a89d9618d3</citedby><cites>FETCH-LOGICAL-c319t-d7445f8e0c1bca91d377e7cde8b2d0c8255025eff6c425ff5ac6497a89d9618d3</cites><orcidid>0000-0002-9532-7158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-020-01921-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-020-01921-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Wen, Peng</creatorcontrib><creatorcontrib>Yuan, Weihua</creatorcontrib><creatorcontrib>Qin, Qianqian</creatorcontrib><creatorcontrib>Sang, Sheng</creatorcontrib><creatorcontrib>Zhang, Zhijun</creatorcontrib><title>Neural attention model for recommendation based on factorization machines</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>In recommendation systems, it is of vital importance to comprehensively consider various aspects of information to make accurate recommendations for users. When the low-order feature interactions between items are insufficient, it is necessary to mine information to learn higher-order feature interactions. In addition, to distinguish the different importance levels of feature interactions, larger weights should be assigned to features with larger contributions to predictions, and smaller weights to those with smaller contributions. Therefore, this paper proposes a neural attention model for recommendation (NAM), which deepens factorization machines (FMs) by adding an attention mechanism and fully connected layers. Through the attention mechanism, NAM can learn the different importance levels of low-order feature interactions. By adding fully connected layers on top of the attention component, NAM can model high-order feature interactions in a nonlinear way. Experiments on two real-world datasets demonstrate that NAM has excellent performance and is superior to FM and other state-of-the-art models. The results demonstrate the effectiveness of the proposed model and the potential of using neural networks for prediction under sparse data.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Factorization</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Processes</subject><subject>Recommender systems</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hxwkqZpjmjiz6QJLiBxi7LEgU5rM5L2MD49ZUXixsmW_d6z_CPkksE1A1A3mUFZawocKDDNGd0fkRmTSlBVanVMZqB5SatKv52Ss5w3ACAEsBlZPuGQ7LawfY9d38SuaKPHbRFiKhK62LbYeXtYrG1GX4xNsK6Pqfmaxq11H02H-ZycBLvNePFb5-T1_u5l8UhXzw_Lxe2KOsF0T70qSxlqBMfWzmrmhVKonMd6zT24mksJXGIIlSu5DEFaV40v2Fp7XbHaizm5mnJ3KX4OmHuziUPqxpOGS9CaCc35qOKTyqWYc8JgdqlpbdobBuYHmZmQmRGZOSAz-9EkJlMexd07pr_of1zfGspwXQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wen, Peng</creator><creator>Yuan, Weihua</creator><creator>Qin, Qianqian</creator><creator>Sang, Sheng</creator><creator>Zhang, Zhijun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9532-7158</orcidid></search><sort><creationdate>20210401</creationdate><title>Neural attention model for recommendation based on factorization machines</title><author>Wen, Peng ; Yuan, Weihua ; Qin, Qianqian ; Sang, Sheng ; Zhang, Zhijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d7445f8e0c1bca91d377e7cde8b2d0c8255025eff6c425ff5ac6497a89d9618d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Factorization</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Processes</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Peng</creatorcontrib><creatorcontrib>Yuan, Weihua</creatorcontrib><creatorcontrib>Qin, Qianqian</creatorcontrib><creatorcontrib>Sang, Sheng</creatorcontrib><creatorcontrib>Zhang, Zhijun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Peng</au><au>Yuan, Weihua</au><au>Qin, Qianqian</au><au>Sang, Sheng</au><au>Zhang, Zhijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural attention model for recommendation based on factorization machines</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>51</volume><issue>4</issue><spage>1829</spage><epage>1844</epage><pages>1829-1844</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>In recommendation systems, it is of vital importance to comprehensively consider various aspects of information to make accurate recommendations for users. When the low-order feature interactions between items are insufficient, it is necessary to mine information to learn higher-order feature interactions. In addition, to distinguish the different importance levels of feature interactions, larger weights should be assigned to features with larger contributions to predictions, and smaller weights to those with smaller contributions. Therefore, this paper proposes a neural attention model for recommendation (NAM), which deepens factorization machines (FMs) by adding an attention mechanism and fully connected layers. Through the attention mechanism, NAM can learn the different importance levels of low-order feature interactions. By adding fully connected layers on top of the attention component, NAM can model high-order feature interactions in a nonlinear way. Experiments on two real-world datasets demonstrate that NAM has excellent performance and is superior to FM and other state-of-the-art models. The results demonstrate the effectiveness of the proposed model and the potential of using neural networks for prediction under sparse data.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-020-01921-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9532-7158</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2021-04, Vol.51 (4), p.1829-1844 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2509913922 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computer Science Factorization Machines Manufacturing Mechanical Engineering Neural networks Processes Recommender systems |
title | Neural attention model for recommendation based on factorization machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20attention%20model%20for%20recommendation%20based%20on%20factorization%20machines&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Wen,%20Peng&rft.date=2021-04-01&rft.volume=51&rft.issue=4&rft.spage=1829&rft.epage=1844&rft.pages=1829-1844&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-020-01921-y&rft_dat=%3Cproquest_cross%3E2509913922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509913922&rft_id=info:pmid/&rfr_iscdi=true |