Spatiotemporal analysis of the UPR transition induced by methylmercury in the mouse brain

Methylmercury (MeHg), an environmental toxicant, induces neuronal cell death and injures a specific area of the brain. MeHg-mediated neurotoxicity is believed to be caused by oxidative stress and endoplasmic reticulum (ER) stress but the mechanism by which those stresses lead to neuronal loss is unc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of toxicology 2021-04, Vol.95 (4), p.1241-1250
Hauptverfasser: Hiraoka, Hideki, Nomura, Ryosuke, Takasugi, Nobumasa, Akai, Ryoko, Iwawaki, Takao, Kumagai, Yoshito, Fujimura, Masatake, Uehara, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250
container_issue 4
container_start_page 1241
container_title Archives of toxicology
container_volume 95
creator Hiraoka, Hideki
Nomura, Ryosuke
Takasugi, Nobumasa
Akai, Ryoko
Iwawaki, Takao
Kumagai, Yoshito
Fujimura, Masatake
Uehara, Takashi
description Methylmercury (MeHg), an environmental toxicant, induces neuronal cell death and injures a specific area of the brain. MeHg-mediated neurotoxicity is believed to be caused by oxidative stress and endoplasmic reticulum (ER) stress but the mechanism by which those stresses lead to neuronal loss is unclear. Here, by utilizing the ER stress-activated indicator (ERAI) system, we investigated the signaling alterations in the unfolded protein response (UPR) prior to neuronal apoptosis in the mouse brain. In ERAI transgenic mice exposed to MeHg (25 mg/kg, S.C.), the ERAI signal, which indicates activation of the cytoprotective pathway of the UPR, was detected in the brain. Interestingly, detailed ex vivo analysis showed that the ERAI signal was localized predominantly in neurons. Time course analysis of MeHg exposure (30 ppm in drinking water) showed that whereas the ERAI signal was gradually attenuated at the late phase after increasing at the early phase, activation of the apoptotic pathway of the UPR was enhanced in proportion to the exposure time. These results suggest that MeHg induces not only ER stress but also neuronal cell death via a UPR shift. UPR modulation could be a therapeutic target for treating neuropathy caused by electrophiles similar to MeHg.
doi_str_mv 10.1007/s00204-021-02982-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509908199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509908199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-66ef5f2c4fa8ee2e64679c7d9a53abf1aeba36a3dca232d346342bdf43f45d543</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxiQJeaA7XM-PKKKLwkJBHRgspzYpqnyhZ0M-fe4TYGN4XTDPfee7kHonJIrSkh67QlhhEeE0VAiY5E4QHPKgUUkhewQzQlwEsVpQmfoxPsNIZRlAo7RDIDHPGMwRx9vnerLtjd11zpVYdWoavSlx63F_drg1csr7p1qfBmoBpeNHgqjcT7i2vTrsaqNKwY3hsEOr9vBG5w7VTan6MiqypuzfV-g1d3t-_Ihenq-f1zePEUFz-I-ShJjY8sKblVmDDMJT1JRpFqoGFRuqTK5gkSBLhQDpoEnwFmuLQfLYx1zWKDLKbdz7ddgfC837eDCG16ymAhBMipEoNhEFa713hkrO1fWyo2SErm1KSebMtiUO5tyu3Sxjx7y2ujflR99AYAJ8GHUfBr3d_uf2G_TQYEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509908199</pqid></control><display><type>article</type><title>Spatiotemporal analysis of the UPR transition induced by methylmercury in the mouse brain</title><source>SpringerLink</source><creator>Hiraoka, Hideki ; Nomura, Ryosuke ; Takasugi, Nobumasa ; Akai, Ryoko ; Iwawaki, Takao ; Kumagai, Yoshito ; Fujimura, Masatake ; Uehara, Takashi</creator><creatorcontrib>Hiraoka, Hideki ; Nomura, Ryosuke ; Takasugi, Nobumasa ; Akai, Ryoko ; Iwawaki, Takao ; Kumagai, Yoshito ; Fujimura, Masatake ; Uehara, Takashi</creatorcontrib><description>Methylmercury (MeHg), an environmental toxicant, induces neuronal cell death and injures a specific area of the brain. MeHg-mediated neurotoxicity is believed to be caused by oxidative stress and endoplasmic reticulum (ER) stress but the mechanism by which those stresses lead to neuronal loss is unclear. Here, by utilizing the ER stress-activated indicator (ERAI) system, we investigated the signaling alterations in the unfolded protein response (UPR) prior to neuronal apoptosis in the mouse brain. In ERAI transgenic mice exposed to MeHg (25 mg/kg, S.C.), the ERAI signal, which indicates activation of the cytoprotective pathway of the UPR, was detected in the brain. Interestingly, detailed ex vivo analysis showed that the ERAI signal was localized predominantly in neurons. Time course analysis of MeHg exposure (30 ppm in drinking water) showed that whereas the ERAI signal was gradually attenuated at the late phase after increasing at the early phase, activation of the apoptotic pathway of the UPR was enhanced in proportion to the exposure time. These results suggest that MeHg induces not only ER stress but also neuronal cell death via a UPR shift. UPR modulation could be a therapeutic target for treating neuropathy caused by electrophiles similar to MeHg.</description><identifier>ISSN: 0340-5761</identifier><identifier>EISSN: 1432-0738</identifier><identifier>DOI: 10.1007/s00204-021-02982-9</identifier><identifier>PMID: 33454823</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apoptosis ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Cell death ; Dimethylmercury ; Drinking water ; Endoplasmic reticulum ; Environmental Health ; Exposure ; Inorganic Compounds ; Mercury (metal) ; Methylmercury ; Neuropathy ; Neurotoxicity ; Occupational Medicine/Industrial Medicine ; Oxidative stress ; Pharmacology/Toxicology ; Protein folding ; Therapeutic targets ; Toxicants ; Transgenic mice</subject><ispartof>Archives of toxicology, 2021-04, Vol.95 (4), p.1241-1250</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-66ef5f2c4fa8ee2e64679c7d9a53abf1aeba36a3dca232d346342bdf43f45d543</citedby><cites>FETCH-LOGICAL-c485t-66ef5f2c4fa8ee2e64679c7d9a53abf1aeba36a3dca232d346342bdf43f45d543</cites><orcidid>0000-0002-6562-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00204-021-02982-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00204-021-02982-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33454823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiraoka, Hideki</creatorcontrib><creatorcontrib>Nomura, Ryosuke</creatorcontrib><creatorcontrib>Takasugi, Nobumasa</creatorcontrib><creatorcontrib>Akai, Ryoko</creatorcontrib><creatorcontrib>Iwawaki, Takao</creatorcontrib><creatorcontrib>Kumagai, Yoshito</creatorcontrib><creatorcontrib>Fujimura, Masatake</creatorcontrib><creatorcontrib>Uehara, Takashi</creatorcontrib><title>Spatiotemporal analysis of the UPR transition induced by methylmercury in the mouse brain</title><title>Archives of toxicology</title><addtitle>Arch Toxicol</addtitle><addtitle>Arch Toxicol</addtitle><description>Methylmercury (MeHg), an environmental toxicant, induces neuronal cell death and injures a specific area of the brain. MeHg-mediated neurotoxicity is believed to be caused by oxidative stress and endoplasmic reticulum (ER) stress but the mechanism by which those stresses lead to neuronal loss is unclear. Here, by utilizing the ER stress-activated indicator (ERAI) system, we investigated the signaling alterations in the unfolded protein response (UPR) prior to neuronal apoptosis in the mouse brain. In ERAI transgenic mice exposed to MeHg (25 mg/kg, S.C.), the ERAI signal, which indicates activation of the cytoprotective pathway of the UPR, was detected in the brain. Interestingly, detailed ex vivo analysis showed that the ERAI signal was localized predominantly in neurons. Time course analysis of MeHg exposure (30 ppm in drinking water) showed that whereas the ERAI signal was gradually attenuated at the late phase after increasing at the early phase, activation of the apoptotic pathway of the UPR was enhanced in proportion to the exposure time. These results suggest that MeHg induces not only ER stress but also neuronal cell death via a UPR shift. UPR modulation could be a therapeutic target for treating neuropathy caused by electrophiles similar to MeHg.</description><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Cell death</subject><subject>Dimethylmercury</subject><subject>Drinking water</subject><subject>Endoplasmic reticulum</subject><subject>Environmental Health</subject><subject>Exposure</subject><subject>Inorganic Compounds</subject><subject>Mercury (metal)</subject><subject>Methylmercury</subject><subject>Neuropathy</subject><subject>Neurotoxicity</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Oxidative stress</subject><subject>Pharmacology/Toxicology</subject><subject>Protein folding</subject><subject>Therapeutic targets</subject><subject>Toxicants</subject><subject>Transgenic mice</subject><issn>0340-5761</issn><issn>1432-0738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxiQJeaA7XM-PKKKLwkJBHRgspzYpqnyhZ0M-fe4TYGN4XTDPfee7kHonJIrSkh67QlhhEeE0VAiY5E4QHPKgUUkhewQzQlwEsVpQmfoxPsNIZRlAo7RDIDHPGMwRx9vnerLtjd11zpVYdWoavSlx63F_drg1csr7p1qfBmoBpeNHgqjcT7i2vTrsaqNKwY3hsEOr9vBG5w7VTan6MiqypuzfV-g1d3t-_Ihenq-f1zePEUFz-I-ShJjY8sKblVmDDMJT1JRpFqoGFRuqTK5gkSBLhQDpoEnwFmuLQfLYx1zWKDLKbdz7ddgfC837eDCG16ymAhBMipEoNhEFa713hkrO1fWyo2SErm1KSebMtiUO5tyu3Sxjx7y2ujflR99AYAJ8GHUfBr3d_uf2G_TQYEM</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hiraoka, Hideki</creator><creator>Nomura, Ryosuke</creator><creator>Takasugi, Nobumasa</creator><creator>Akai, Ryoko</creator><creator>Iwawaki, Takao</creator><creator>Kumagai, Yoshito</creator><creator>Fujimura, Masatake</creator><creator>Uehara, Takashi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6562-2957</orcidid></search><sort><creationdate>20210401</creationdate><title>Spatiotemporal analysis of the UPR transition induced by methylmercury in the mouse brain</title><author>Hiraoka, Hideki ; Nomura, Ryosuke ; Takasugi, Nobumasa ; Akai, Ryoko ; Iwawaki, Takao ; Kumagai, Yoshito ; Fujimura, Masatake ; Uehara, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-66ef5f2c4fa8ee2e64679c7d9a53abf1aeba36a3dca232d346342bdf43f45d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Cell death</topic><topic>Dimethylmercury</topic><topic>Drinking water</topic><topic>Endoplasmic reticulum</topic><topic>Environmental Health</topic><topic>Exposure</topic><topic>Inorganic Compounds</topic><topic>Mercury (metal)</topic><topic>Methylmercury</topic><topic>Neuropathy</topic><topic>Neurotoxicity</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Oxidative stress</topic><topic>Pharmacology/Toxicology</topic><topic>Protein folding</topic><topic>Therapeutic targets</topic><topic>Toxicants</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiraoka, Hideki</creatorcontrib><creatorcontrib>Nomura, Ryosuke</creatorcontrib><creatorcontrib>Takasugi, Nobumasa</creatorcontrib><creatorcontrib>Akai, Ryoko</creatorcontrib><creatorcontrib>Iwawaki, Takao</creatorcontrib><creatorcontrib>Kumagai, Yoshito</creatorcontrib><creatorcontrib>Fujimura, Masatake</creatorcontrib><creatorcontrib>Uehara, Takashi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Agricultural &amp; Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archives of toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiraoka, Hideki</au><au>Nomura, Ryosuke</au><au>Takasugi, Nobumasa</au><au>Akai, Ryoko</au><au>Iwawaki, Takao</au><au>Kumagai, Yoshito</au><au>Fujimura, Masatake</au><au>Uehara, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal analysis of the UPR transition induced by methylmercury in the mouse brain</atitle><jtitle>Archives of toxicology</jtitle><stitle>Arch Toxicol</stitle><addtitle>Arch Toxicol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>95</volume><issue>4</issue><spage>1241</spage><epage>1250</epage><pages>1241-1250</pages><issn>0340-5761</issn><eissn>1432-0738</eissn><abstract>Methylmercury (MeHg), an environmental toxicant, induces neuronal cell death and injures a specific area of the brain. MeHg-mediated neurotoxicity is believed to be caused by oxidative stress and endoplasmic reticulum (ER) stress but the mechanism by which those stresses lead to neuronal loss is unclear. Here, by utilizing the ER stress-activated indicator (ERAI) system, we investigated the signaling alterations in the unfolded protein response (UPR) prior to neuronal apoptosis in the mouse brain. In ERAI transgenic mice exposed to MeHg (25 mg/kg, S.C.), the ERAI signal, which indicates activation of the cytoprotective pathway of the UPR, was detected in the brain. Interestingly, detailed ex vivo analysis showed that the ERAI signal was localized predominantly in neurons. Time course analysis of MeHg exposure (30 ppm in drinking water) showed that whereas the ERAI signal was gradually attenuated at the late phase after increasing at the early phase, activation of the apoptotic pathway of the UPR was enhanced in proportion to the exposure time. These results suggest that MeHg induces not only ER stress but also neuronal cell death via a UPR shift. UPR modulation could be a therapeutic target for treating neuropathy caused by electrophiles similar to MeHg.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33454823</pmid><doi>10.1007/s00204-021-02982-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6562-2957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0340-5761
ispartof Archives of toxicology, 2021-04, Vol.95 (4), p.1241-1250
issn 0340-5761
1432-0738
language eng
recordid cdi_proquest_journals_2509908199
source SpringerLink
subjects Apoptosis
Biomedical and Life Sciences
Biomedicine
Brain
Cell death
Dimethylmercury
Drinking water
Endoplasmic reticulum
Environmental Health
Exposure
Inorganic Compounds
Mercury (metal)
Methylmercury
Neuropathy
Neurotoxicity
Occupational Medicine/Industrial Medicine
Oxidative stress
Pharmacology/Toxicology
Protein folding
Therapeutic targets
Toxicants
Transgenic mice
title Spatiotemporal analysis of the UPR transition induced by methylmercury in the mouse brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20analysis%20of%20the%20UPR%20transition%20induced%20by%20methylmercury%20in%20the%20mouse%20brain&rft.jtitle=Archives%20of%20toxicology&rft.au=Hiraoka,%20Hideki&rft.date=2021-04-01&rft.volume=95&rft.issue=4&rft.spage=1241&rft.epage=1250&rft.pages=1241-1250&rft.issn=0340-5761&rft.eissn=1432-0738&rft_id=info:doi/10.1007/s00204-021-02982-9&rft_dat=%3Cproquest_cross%3E2509908199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509908199&rft_id=info:pmid/33454823&rfr_iscdi=true