Undirecting membership in models of Anti-Foundation

It is known that, if we take a countable model of Zermelo–Fraenkel set theory ZFC and “undirect” the membership relation (that is, make a graph by joining x to y if either x ∈ y or y ∈ x ), we obtain the Erdős–Rényi random graph. The crucial axiom in the proof of this is the Axiom of Foundation; so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae 2021-04, Vol.95 (2), p.393-400
Hauptverfasser: Adam-Day, Bea, Cameron, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 2
container_start_page 393
container_title Aequationes mathematicae
container_volume 95
creator Adam-Day, Bea
Cameron, Peter J.
description It is known that, if we take a countable model of Zermelo–Fraenkel set theory ZFC and “undirect” the membership relation (that is, make a graph by joining x to y if either x ∈ y or y ∈ x ), we obtain the Erdős–Rényi random graph. The crucial axiom in the proof of this is the Axiom of Foundation; so it is natural to wonder what happens if we delete this axiom, or replace it by an alternative (such as Aczel’s Anti-Foundation Axiom). The resulting graph may fail to be simple; it may have loops (if x ∈ x for some x ) or multiple edges (if x ∈ y and y ∈ x for some distinct x ,  y ). We show that, in ZFA, if we keep the loops and ignore the multiple edges, we obtain the “random loopy graph” (which is ℵ 0 -categorical and homogeneous), but if we keep multiple edges, the resulting graph is not ℵ 0 -categorical, but has infinitely many 1-types. Moreover, if we keep only loops and double edges and discard single edges, the resulting graph contains countably many connected components isomorphic to any given finite connected graph with loops.
doi_str_mv 10.1007/s00010-020-00763-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509654371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509654371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f56a0f672a2fbeefbec745421b21230f56561f7f5be2862badf001706503a1643</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaLgWv0DnhY8RyfJJmmPpVgrFLzYc8juJjWlm6zJLsV_b-oK3jw8huF9zPAQuifwSADkUwIAAhhoBkjB8OkCFaTK63wB7BIVZx4vgFfX6CalQ96olKxAbOdbF00zOL8vO9PVJqYP15fOl11ozTGVwZZLPzi8DqNv9eCCv0VXVh-TufudM7RbP7-vNnj79vK6Wm5xwwQbsOVCgxWSamprYzIaWfGKkpoSyiDTXBArLa8NnQta69bmtyQIDkwTUbEZephy-xg-R5MGdQhj9PmkohwWgldMkqyik6qJIaVorOqj63T8UgTUuRw1laNyOeqnHHXKJjaZUhb7vYl_0f-4vgFupWZF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509654371</pqid></control><display><type>article</type><title>Undirecting membership in models of Anti-Foundation</title><source>Springer Online Journals</source><creator>Adam-Day, Bea ; Cameron, Peter J.</creator><creatorcontrib>Adam-Day, Bea ; Cameron, Peter J.</creatorcontrib><description>It is known that, if we take a countable model of Zermelo–Fraenkel set theory ZFC and “undirect” the membership relation (that is, make a graph by joining x to y if either x ∈ y or y ∈ x ), we obtain the Erdős–Rényi random graph. The crucial axiom in the proof of this is the Axiom of Foundation; so it is natural to wonder what happens if we delete this axiom, or replace it by an alternative (such as Aczel’s Anti-Foundation Axiom). The resulting graph may fail to be simple; it may have loops (if x ∈ x for some x ) or multiple edges (if x ∈ y and y ∈ x for some distinct x ,  y ). We show that, in ZFA, if we keep the loops and ignore the multiple edges, we obtain the “random loopy graph” (which is ℵ 0 -categorical and homogeneous), but if we keep multiple edges, the resulting graph is not ℵ 0 -categorical, but has infinitely many 1-types. Moreover, if we keep only loops and double edges and discard single edges, the resulting graph contains countably many connected components isomorphic to any given finite connected graph with loops.</description><identifier>ISSN: 0001-9054</identifier><identifier>EISSN: 1420-8903</identifier><identifier>DOI: 10.1007/s00010-020-00763-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Combinatorics ; Graph theory ; Mathematics ; Mathematics and Statistics ; Set theory</subject><ispartof>Aequationes mathematicae, 2021-04, Vol.95 (2), p.393-400</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f56a0f672a2fbeefbec745421b21230f56561f7f5be2862badf001706503a1643</citedby><cites>FETCH-LOGICAL-c363t-f56a0f672a2fbeefbec745421b21230f56561f7f5be2862badf001706503a1643</cites><orcidid>0000-0002-7891-916X ; 0000-0003-3130-9505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00010-020-00763-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00010-020-00763-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Adam-Day, Bea</creatorcontrib><creatorcontrib>Cameron, Peter J.</creatorcontrib><title>Undirecting membership in models of Anti-Foundation</title><title>Aequationes mathematicae</title><addtitle>Aequat. Math</addtitle><description>It is known that, if we take a countable model of Zermelo–Fraenkel set theory ZFC and “undirect” the membership relation (that is, make a graph by joining x to y if either x ∈ y or y ∈ x ), we obtain the Erdős–Rényi random graph. The crucial axiom in the proof of this is the Axiom of Foundation; so it is natural to wonder what happens if we delete this axiom, or replace it by an alternative (such as Aczel’s Anti-Foundation Axiom). The resulting graph may fail to be simple; it may have loops (if x ∈ x for some x ) or multiple edges (if x ∈ y and y ∈ x for some distinct x ,  y ). We show that, in ZFA, if we keep the loops and ignore the multiple edges, we obtain the “random loopy graph” (which is ℵ 0 -categorical and homogeneous), but if we keep multiple edges, the resulting graph is not ℵ 0 -categorical, but has infinitely many 1-types. Moreover, if we keep only loops and double edges and discard single edges, the resulting graph contains countably many connected components isomorphic to any given finite connected graph with loops.</description><subject>Analysis</subject><subject>Combinatorics</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Set theory</subject><issn>0001-9054</issn><issn>1420-8903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LAzEQDaLgWv0DnhY8RyfJJmmPpVgrFLzYc8juJjWlm6zJLsV_b-oK3jw8huF9zPAQuifwSADkUwIAAhhoBkjB8OkCFaTK63wB7BIVZx4vgFfX6CalQ96olKxAbOdbF00zOL8vO9PVJqYP15fOl11ozTGVwZZLPzi8DqNv9eCCv0VXVh-TufudM7RbP7-vNnj79vK6Wm5xwwQbsOVCgxWSamprYzIaWfGKkpoSyiDTXBArLa8NnQta69bmtyQIDkwTUbEZephy-xg-R5MGdQhj9PmkohwWgldMkqyik6qJIaVorOqj63T8UgTUuRw1laNyOeqnHHXKJjaZUhb7vYl_0f-4vgFupWZF</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Adam-Day, Bea</creator><creator>Cameron, Peter J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7891-916X</orcidid><orcidid>https://orcid.org/0000-0003-3130-9505</orcidid></search><sort><creationdate>20210401</creationdate><title>Undirecting membership in models of Anti-Foundation</title><author>Adam-Day, Bea ; Cameron, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f56a0f672a2fbeefbec745421b21230f56561f7f5be2862badf001706503a1643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Combinatorics</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adam-Day, Bea</creatorcontrib><creatorcontrib>Cameron, Peter J.</creatorcontrib><collection>Springer Nature Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aequationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adam-Day, Bea</au><au>Cameron, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Undirecting membership in models of Anti-Foundation</atitle><jtitle>Aequationes mathematicae</jtitle><stitle>Aequat. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>95</volume><issue>2</issue><spage>393</spage><epage>400</epage><pages>393-400</pages><issn>0001-9054</issn><eissn>1420-8903</eissn><abstract>It is known that, if we take a countable model of Zermelo–Fraenkel set theory ZFC and “undirect” the membership relation (that is, make a graph by joining x to y if either x ∈ y or y ∈ x ), we obtain the Erdős–Rényi random graph. The crucial axiom in the proof of this is the Axiom of Foundation; so it is natural to wonder what happens if we delete this axiom, or replace it by an alternative (such as Aczel’s Anti-Foundation Axiom). The resulting graph may fail to be simple; it may have loops (if x ∈ x for some x ) or multiple edges (if x ∈ y and y ∈ x for some distinct x ,  y ). We show that, in ZFA, if we keep the loops and ignore the multiple edges, we obtain the “random loopy graph” (which is ℵ 0 -categorical and homogeneous), but if we keep multiple edges, the resulting graph is not ℵ 0 -categorical, but has infinitely many 1-types. Moreover, if we keep only loops and double edges and discard single edges, the resulting graph contains countably many connected components isomorphic to any given finite connected graph with loops.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00010-020-00763-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7891-916X</orcidid><orcidid>https://orcid.org/0000-0003-3130-9505</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-9054
ispartof Aequationes mathematicae, 2021-04, Vol.95 (2), p.393-400
issn 0001-9054
1420-8903
language eng
recordid cdi_proquest_journals_2509654371
source Springer Online Journals
subjects Analysis
Combinatorics
Graph theory
Mathematics
Mathematics and Statistics
Set theory
title Undirecting membership in models of Anti-Foundation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Undirecting%20membership%20in%20models%20of%20Anti-Foundation&rft.jtitle=Aequationes%20mathematicae&rft.au=Adam-Day,%20Bea&rft.date=2021-04-01&rft.volume=95&rft.issue=2&rft.spage=393&rft.epage=400&rft.pages=393-400&rft.issn=0001-9054&rft.eissn=1420-8903&rft_id=info:doi/10.1007/s00010-020-00763-w&rft_dat=%3Cproquest_cross%3E2509654371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509654371&rft_id=info:pmid/&rfr_iscdi=true