The chromatic number of triangle-free and broom-free graphs in terms of the number of vertices
The Gárfás–Sumner conjecture asks whether for every tree T , the class of (induced) T -free graphs is χ -bounded. The conjecture is solved for several special trees, but it is still open in general. Motivated by the conjecture, the chromatic number of triangle-free and broom-free graphs is well stud...
Gespeichert in:
Veröffentlicht in: | Aequationes mathematicae 2021-04, Vol.95 (2), p.319-328 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 2 |
container_start_page | 319 |
container_title | Aequationes mathematicae |
container_volume | 95 |
creator | Matsumoto, Naoki Tanaka, Minako |
description | The Gárfás–Sumner conjecture asks whether for every tree
T
, the class of (induced)
T
-free graphs is
χ
-bounded. The conjecture is solved for several special trees, but it is still open in general. Motivated by the conjecture, the chromatic number of triangle-free and broom-free graphs is well studied, since a broom is one of the generalizations of a star, where a
broom
B
(
m
,
n
) is the graph obtained from a star
K
1
,
n
and an
m
-vertex path
P
m
by identifying the center of
K
1
,
n
and a leaf of
P
m
. Gárfás, Szemeredi and Tuza proved that for every triangle-free and
B
(
m
,
n
)-free graph
G
,
χ
(
G
)
≤
m
+
n
-
1
. This upper bound has been improved by Wang and Wu to
m
+
n
-
2
for
m
≥
2
,
n
≥
1
. In this paper, we prove that any triangle-free and
B
(4, 2)-free graph
G
is 3-colorable if the number of vertices of
G
is at least 17. Furthermore, the above estimation is the best possible since there exists a triangle-free and
B
(4, 2)-free 4-chromatic graph with sixteen vertices, named the Clebsch graph. |
doi_str_mv | 10.1007/s00010-020-00760-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509654225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509654225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a28d8fcc8b131afba7140e1380b47f248a56af79b4e71c2f386ac6d0c788be123</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA8-ok2d2kRyn-g4KXejVk00m7pbtbJ1vBfnrTrtCbh2F4zHtv4MfYrYB7AaAfIgAIyECmAV1Ctj9jI5EnaSagztnocM8mUOSX7CrGdVJSazVin_MVcr-irnF97Xm7ayok3gXeU-3a5QazQIjctQteUdc1g1yS264ir1veIzXx6E89p_Q3UqrDeM0ugttEvPnbY_bx_DSfvmaz95e36eMs80qVfeakWZjgvamEEi5UToscUCgDVa6DzI0rShf0pMpRCy-DMqXz5QK8NqZCIdWY3Q29W-q-dhh7u-521KaXVhYwKYtcyiK55ODy1MVIGOyW6sbRjxVgDxztwNEmjvbI0e5TSA2hmMztEulU_U_qF3Nmdmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509654225</pqid></control><display><type>article</type><title>The chromatic number of triangle-free and broom-free graphs in terms of the number of vertices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Matsumoto, Naoki ; Tanaka, Minako</creator><creatorcontrib>Matsumoto, Naoki ; Tanaka, Minako</creatorcontrib><description>The Gárfás–Sumner conjecture asks whether for every tree
T
, the class of (induced)
T
-free graphs is
χ
-bounded. The conjecture is solved for several special trees, but it is still open in general. Motivated by the conjecture, the chromatic number of triangle-free and broom-free graphs is well studied, since a broom is one of the generalizations of a star, where a
broom
B
(
m
,
n
) is the graph obtained from a star
K
1
,
n
and an
m
-vertex path
P
m
by identifying the center of
K
1
,
n
and a leaf of
P
m
. Gárfás, Szemeredi and Tuza proved that for every triangle-free and
B
(
m
,
n
)-free graph
G
,
χ
(
G
)
≤
m
+
n
-
1
. This upper bound has been improved by Wang and Wu to
m
+
n
-
2
for
m
≥
2
,
n
≥
1
. In this paper, we prove that any triangle-free and
B
(4, 2)-free graph
G
is 3-colorable if the number of vertices of
G
is at least 17. Furthermore, the above estimation is the best possible since there exists a triangle-free and
B
(4, 2)-free 4-chromatic graph with sixteen vertices, named the Clebsch graph.</description><identifier>ISSN: 0001-9054</identifier><identifier>EISSN: 1420-8903</identifier><identifier>DOI: 10.1007/s00010-020-00760-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Apexes ; Combinatorics ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Trees (mathematics) ; Upper bounds</subject><ispartof>Aequationes mathematicae, 2021-04, Vol.95 (2), p.319-328</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-a28d8fcc8b131afba7140e1380b47f248a56af79b4e71c2f386ac6d0c788be123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00010-020-00760-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00010-020-00760-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Matsumoto, Naoki</creatorcontrib><creatorcontrib>Tanaka, Minako</creatorcontrib><title>The chromatic number of triangle-free and broom-free graphs in terms of the number of vertices</title><title>Aequationes mathematicae</title><addtitle>Aequat. Math</addtitle><description>The Gárfás–Sumner conjecture asks whether for every tree
T
, the class of (induced)
T
-free graphs is
χ
-bounded. The conjecture is solved for several special trees, but it is still open in general. Motivated by the conjecture, the chromatic number of triangle-free and broom-free graphs is well studied, since a broom is one of the generalizations of a star, where a
broom
B
(
m
,
n
) is the graph obtained from a star
K
1
,
n
and an
m
-vertex path
P
m
by identifying the center of
K
1
,
n
and a leaf of
P
m
. Gárfás, Szemeredi and Tuza proved that for every triangle-free and
B
(
m
,
n
)-free graph
G
,
χ
(
G
)
≤
m
+
n
-
1
. This upper bound has been improved by Wang and Wu to
m
+
n
-
2
for
m
≥
2
,
n
≥
1
. In this paper, we prove that any triangle-free and
B
(4, 2)-free graph
G
is 3-colorable if the number of vertices of
G
is at least 17. Furthermore, the above estimation is the best possible since there exists a triangle-free and
B
(4, 2)-free 4-chromatic graph with sixteen vertices, named the Clebsch graph.</description><subject>Analysis</subject><subject>Apexes</subject><subject>Combinatorics</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Trees (mathematics)</subject><subject>Upper bounds</subject><issn>0001-9054</issn><issn>1420-8903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPA8-ok2d2kRyn-g4KXejVk00m7pbtbJ1vBfnrTrtCbh2F4zHtv4MfYrYB7AaAfIgAIyECmAV1Ctj9jI5EnaSagztnocM8mUOSX7CrGdVJSazVin_MVcr-irnF97Xm7ayok3gXeU-3a5QazQIjctQteUdc1g1yS264ir1veIzXx6E89p_Q3UqrDeM0ugttEvPnbY_bx_DSfvmaz95e36eMs80qVfeakWZjgvamEEi5UToscUCgDVa6DzI0rShf0pMpRCy-DMqXz5QK8NqZCIdWY3Q29W-q-dhh7u-521KaXVhYwKYtcyiK55ODy1MVIGOyW6sbRjxVgDxztwNEmjvbI0e5TSA2hmMztEulU_U_qF3Nmdmk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Matsumoto, Naoki</creator><creator>Tanaka, Minako</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210401</creationdate><title>The chromatic number of triangle-free and broom-free graphs in terms of the number of vertices</title><author>Matsumoto, Naoki ; Tanaka, Minako</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a28d8fcc8b131afba7140e1380b47f248a56af79b4e71c2f386ac6d0c788be123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Apexes</topic><topic>Combinatorics</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Trees (mathematics)</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, Naoki</creatorcontrib><creatorcontrib>Tanaka, Minako</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aequationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumoto, Naoki</au><au>Tanaka, Minako</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The chromatic number of triangle-free and broom-free graphs in terms of the number of vertices</atitle><jtitle>Aequationes mathematicae</jtitle><stitle>Aequat. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>95</volume><issue>2</issue><spage>319</spage><epage>328</epage><pages>319-328</pages><issn>0001-9054</issn><eissn>1420-8903</eissn><abstract>The Gárfás–Sumner conjecture asks whether for every tree
T
, the class of (induced)
T
-free graphs is
χ
-bounded. The conjecture is solved for several special trees, but it is still open in general. Motivated by the conjecture, the chromatic number of triangle-free and broom-free graphs is well studied, since a broom is one of the generalizations of a star, where a
broom
B
(
m
,
n
) is the graph obtained from a star
K
1
,
n
and an
m
-vertex path
P
m
by identifying the center of
K
1
,
n
and a leaf of
P
m
. Gárfás, Szemeredi and Tuza proved that for every triangle-free and
B
(
m
,
n
)-free graph
G
,
χ
(
G
)
≤
m
+
n
-
1
. This upper bound has been improved by Wang and Wu to
m
+
n
-
2
for
m
≥
2
,
n
≥
1
. In this paper, we prove that any triangle-free and
B
(4, 2)-free graph
G
is 3-colorable if the number of vertices of
G
is at least 17. Furthermore, the above estimation is the best possible since there exists a triangle-free and
B
(4, 2)-free 4-chromatic graph with sixteen vertices, named the Clebsch graph.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00010-020-00760-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-9054 |
ispartof | Aequationes mathematicae, 2021-04, Vol.95 (2), p.319-328 |
issn | 0001-9054 1420-8903 |
language | eng |
recordid | cdi_proquest_journals_2509654225 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Apexes Combinatorics Graph theory Graphs Mathematics Mathematics and Statistics Trees (mathematics) Upper bounds |
title | The chromatic number of triangle-free and broom-free graphs in terms of the number of vertices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20chromatic%20number%20of%20triangle-free%20and%20broom-free%20graphs%20in%20terms%20of%20the%20number%20of%20vertices&rft.jtitle=Aequationes%20mathematicae&rft.au=Matsumoto,%20Naoki&rft.date=2021-04-01&rft.volume=95&rft.issue=2&rft.spage=319&rft.epage=328&rft.pages=319-328&rft.issn=0001-9054&rft.eissn=1420-8903&rft_id=info:doi/10.1007/s00010-020-00760-z&rft_dat=%3Cproquest_cross%3E2509654225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509654225&rft_id=info:pmid/&rfr_iscdi=true |