Optimal auction for delay and energy constrained task offloading in mobile edge computing

Mobile edge computing has emerged as a promising paradigm to complement the computing and energy resources of mobile devices. In this computing paradigm, mobile devices offload their computing tasks to nearby edge servers, which can potentially reduce their energy consumption and task completion del...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2020-12, Vol.183, p.107527, Article 107527
Hauptverfasser: Mashhadi, Farshad, Monroy, Sergio A. Salinas, Bozorgchenani, Arash, Tarchi, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107527
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 183
creator Mashhadi, Farshad
Monroy, Sergio A. Salinas
Bozorgchenani, Arash
Tarchi, Daniele
description Mobile edge computing has emerged as a promising paradigm to complement the computing and energy resources of mobile devices. In this computing paradigm, mobile devices offload their computing tasks to nearby edge servers, which can potentially reduce their energy consumption and task completion delay. In exchange for processing the computing tasks, edge servers expect to receive a payment that covers their operating costs and allows them to make a profit. Unfortunately, existing works either ignore the payments to the edge servers, or ignore the task processing delay and energy consumption of the mobile devices. To bridge this gap, we propose an auction to allocate edge servers to mobile devices that is executed by a pair of deep neural networks. Our proposed auction maximizes the profit of the edge servers, and satisfies the task processing delay and energy consumption constraints of the mobile devices. The proposed deep neural networks also guarantee that the mobile devices are unable to unfairly affect the results of the auctions. Our extensive simulations show that our proposed auction mechanism increases the profit of the edge servers by at least 50% compared to randomized auctions, and satisfies the task processing delay and energy consumption constraints of mobile devices.
doi_str_mv 10.1016/j.comnet.2020.107527
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509634267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128620311841</els_id><sourcerecordid>2509634267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-ecfede64ae2201ddc0a7abc13e630aaf00712b480e6104b83ad7d1faad453ed83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-Aw8Bz10nH9t2L4IsfsHCXvTgKaTJdEltk5qkwv57u9Szpxlm3neG98myWworCrS4b1fa9w7TigE7jco1K8-yBa1KlpdQbM6nnlebnLKquMyuYmwBQAhWLbLP_ZBsrzqiRp2sd6TxgRjs1JEoZwg6DIcj0d7FFJR1aEhS8Yv4pum8MtYdiHWk97XtkKA54CTthzFNi-vsolFdxJu_usw-np_et6_5bv_ytn3c5ZpXkHLUDRoshELGgBqjQZWq1pRjwUGpBqCkrBYVYEFB1BVXpjS0UcqINUdT8WV2N98dgv8eMSbZ-jG46aVka9gUXLCinFRiVungYwzYyCFMucNRUpAniLKVM0R5gihniJPtYbbhlODHYpBRW3QajQ2okzTe_n_gF118fic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509634267</pqid></control><display><type>article</type><title>Optimal auction for delay and energy constrained task offloading in mobile edge computing</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mashhadi, Farshad ; Monroy, Sergio A. Salinas ; Bozorgchenani, Arash ; Tarchi, Daniele</creator><creatorcontrib>Mashhadi, Farshad ; Monroy, Sergio A. Salinas ; Bozorgchenani, Arash ; Tarchi, Daniele</creatorcontrib><description>Mobile edge computing has emerged as a promising paradigm to complement the computing and energy resources of mobile devices. In this computing paradigm, mobile devices offload their computing tasks to nearby edge servers, which can potentially reduce their energy consumption and task completion delay. In exchange for processing the computing tasks, edge servers expect to receive a payment that covers their operating costs and allows them to make a profit. Unfortunately, existing works either ignore the payments to the edge servers, or ignore the task processing delay and energy consumption of the mobile devices. To bridge this gap, we propose an auction to allocate edge servers to mobile devices that is executed by a pair of deep neural networks. Our proposed auction maximizes the profit of the edge servers, and satisfies the task processing delay and energy consumption constraints of the mobile devices. The proposed deep neural networks also guarantee that the mobile devices are unable to unfairly affect the results of the auctions. Our extensive simulations show that our proposed auction mechanism increases the profit of the edge servers by at least 50% compared to randomized auctions, and satisfies the task processing delay and energy consumption constraints of mobile devices.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2020.107527</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial neural networks ; Auction ; Auctions ; Computation offloading ; Constraints ; Deep learning ; Delay ; Delay and energy sensitive tasks ; Edge computing ; Electronic devices ; Energy consumption ; Energy sources ; Mobile computing ; Mobile edge computing ; Neural networks ; Servers</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2020-12, Vol.183, p.107527, Article 107527</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Dec 24, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-ecfede64ae2201ddc0a7abc13e630aaf00712b480e6104b83ad7d1faad453ed83</citedby><cites>FETCH-LOGICAL-c380t-ecfede64ae2201ddc0a7abc13e630aaf00712b480e6104b83ad7d1faad453ed83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.comnet.2020.107527$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Mashhadi, Farshad</creatorcontrib><creatorcontrib>Monroy, Sergio A. Salinas</creatorcontrib><creatorcontrib>Bozorgchenani, Arash</creatorcontrib><creatorcontrib>Tarchi, Daniele</creatorcontrib><title>Optimal auction for delay and energy constrained task offloading in mobile edge computing</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Mobile edge computing has emerged as a promising paradigm to complement the computing and energy resources of mobile devices. In this computing paradigm, mobile devices offload their computing tasks to nearby edge servers, which can potentially reduce their energy consumption and task completion delay. In exchange for processing the computing tasks, edge servers expect to receive a payment that covers their operating costs and allows them to make a profit. Unfortunately, existing works either ignore the payments to the edge servers, or ignore the task processing delay and energy consumption of the mobile devices. To bridge this gap, we propose an auction to allocate edge servers to mobile devices that is executed by a pair of deep neural networks. Our proposed auction maximizes the profit of the edge servers, and satisfies the task processing delay and energy consumption constraints of the mobile devices. The proposed deep neural networks also guarantee that the mobile devices are unable to unfairly affect the results of the auctions. Our extensive simulations show that our proposed auction mechanism increases the profit of the edge servers by at least 50% compared to randomized auctions, and satisfies the task processing delay and energy consumption constraints of mobile devices.</description><subject>Artificial neural networks</subject><subject>Auction</subject><subject>Auctions</subject><subject>Computation offloading</subject><subject>Constraints</subject><subject>Deep learning</subject><subject>Delay</subject><subject>Delay and energy sensitive tasks</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Energy sources</subject><subject>Mobile computing</subject><subject>Mobile edge computing</subject><subject>Neural networks</subject><subject>Servers</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-Aw8Bz10nH9t2L4IsfsHCXvTgKaTJdEltk5qkwv57u9Szpxlm3neG98myWworCrS4b1fa9w7TigE7jco1K8-yBa1KlpdQbM6nnlebnLKquMyuYmwBQAhWLbLP_ZBsrzqiRp2sd6TxgRjs1JEoZwg6DIcj0d7FFJR1aEhS8Yv4pum8MtYdiHWk97XtkKA54CTthzFNi-vsolFdxJu_usw-np_et6_5bv_ytn3c5ZpXkHLUDRoshELGgBqjQZWq1pRjwUGpBqCkrBYVYEFB1BVXpjS0UcqINUdT8WV2N98dgv8eMSbZ-jG46aVka9gUXLCinFRiVungYwzYyCFMucNRUpAniLKVM0R5gihniJPtYbbhlODHYpBRW3QajQ2okzTe_n_gF118fic</recordid><startdate>20201224</startdate><enddate>20201224</enddate><creator>Mashhadi, Farshad</creator><creator>Monroy, Sergio A. Salinas</creator><creator>Bozorgchenani, Arash</creator><creator>Tarchi, Daniele</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201224</creationdate><title>Optimal auction for delay and energy constrained task offloading in mobile edge computing</title><author>Mashhadi, Farshad ; Monroy, Sergio A. Salinas ; Bozorgchenani, Arash ; Tarchi, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-ecfede64ae2201ddc0a7abc13e630aaf00712b480e6104b83ad7d1faad453ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Auction</topic><topic>Auctions</topic><topic>Computation offloading</topic><topic>Constraints</topic><topic>Deep learning</topic><topic>Delay</topic><topic>Delay and energy sensitive tasks</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Energy sources</topic><topic>Mobile computing</topic><topic>Mobile edge computing</topic><topic>Neural networks</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mashhadi, Farshad</creatorcontrib><creatorcontrib>Monroy, Sergio A. Salinas</creatorcontrib><creatorcontrib>Bozorgchenani, Arash</creatorcontrib><creatorcontrib>Tarchi, Daniele</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashhadi, Farshad</au><au>Monroy, Sergio A. Salinas</au><au>Bozorgchenani, Arash</au><au>Tarchi, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal auction for delay and energy constrained task offloading in mobile edge computing</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2020-12-24</date><risdate>2020</risdate><volume>183</volume><spage>107527</spage><pages>107527-</pages><artnum>107527</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Mobile edge computing has emerged as a promising paradigm to complement the computing and energy resources of mobile devices. In this computing paradigm, mobile devices offload their computing tasks to nearby edge servers, which can potentially reduce their energy consumption and task completion delay. In exchange for processing the computing tasks, edge servers expect to receive a payment that covers their operating costs and allows them to make a profit. Unfortunately, existing works either ignore the payments to the edge servers, or ignore the task processing delay and energy consumption of the mobile devices. To bridge this gap, we propose an auction to allocate edge servers to mobile devices that is executed by a pair of deep neural networks. Our proposed auction maximizes the profit of the edge servers, and satisfies the task processing delay and energy consumption constraints of the mobile devices. The proposed deep neural networks also guarantee that the mobile devices are unable to unfairly affect the results of the auctions. Our extensive simulations show that our proposed auction mechanism increases the profit of the edge servers by at least 50% compared to randomized auctions, and satisfies the task processing delay and energy consumption constraints of mobile devices.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2020.107527</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2020-12, Vol.183, p.107527, Article 107527
issn 1389-1286
1872-7069
language eng
recordid cdi_proquest_journals_2509634267
source Elsevier ScienceDirect Journals Complete
subjects Artificial neural networks
Auction
Auctions
Computation offloading
Constraints
Deep learning
Delay
Delay and energy sensitive tasks
Edge computing
Electronic devices
Energy consumption
Energy sources
Mobile computing
Mobile edge computing
Neural networks
Servers
title Optimal auction for delay and energy constrained task offloading in mobile edge computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20auction%20for%20delay%20and%20energy%20constrained%20task%20offloading%20in%20mobile%20edge%20computing&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Mashhadi,%20Farshad&rft.date=2020-12-24&rft.volume=183&rft.spage=107527&rft.pages=107527-&rft.artnum=107527&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2020.107527&rft_dat=%3Cproquest_cross%3E2509634267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509634267&rft_id=info:pmid/&rft_els_id=S1389128620311841&rfr_iscdi=true