Forgetful experience replay in hierarchical reinforcement learning from expert demonstrations

Deep reinforcement learning (RL) shows impressive results in complex gaming and robotic environments. These results are commonly achieved at the expense of huge computational costs and require an incredible number of episodes of interactions between the agent and the environment. Hierarchical method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2021-04, Vol.218, p.106844, Article 106844
Hauptverfasser: Skrynnik, Alexey, Staroverov, Aleksey, Aitygulov, Ermek, Aksenov, Kirill, Davydov, Vasilii, Panov, Aleksandr I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106844
container_title Knowledge-based systems
container_volume 218
creator Skrynnik, Alexey
Staroverov, Aleksey
Aitygulov, Ermek
Aksenov, Kirill
Davydov, Vasilii
Panov, Aleksandr I.
description Deep reinforcement learning (RL) shows impressive results in complex gaming and robotic environments. These results are commonly achieved at the expense of huge computational costs and require an incredible number of episodes of interactions between the agent and the environment. Hierarchical methods and expert demonstrations are among the most promising approaches to improve the sample efficiency of reinforcement learning methods. In this paper, we propose a combination of methods that allow the agent to use low-quality demonstrations in complex vision-based environments with multiple related goals. Our Forgetful Experience Replay (ForgER) algorithm effectively handles expert data errors and reduces quality losses when adapting the action space and states representation to the agent’s capabilities. The proposed goal-oriented replay buffer structure allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations. Our method has a high degree of versatility and can be integrated into various off-policy methods. The ForgER surpasses the existing state-of-the-art RL methods using expert demonstrations in complex environments. The solution based on our algorithm beats other solutions for the famous MineRL competition and allows the agent to demonstrate the behavior at the expert level.
doi_str_mv 10.1016/j.knosys.2021.106844
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509633910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705121001076</els_id><sourcerecordid>2509633910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-934fd50c289b9591ae364225502fca9d5ef049755a1e3d3159f29a0c157a42ab3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKvfwMOC560v_3abiyDFqlDwokcJafalTd0mNdmK_fZuXc-eBoaZebwfIdcUJhRodbuZfISYD3nCgNHeqqZCnJARndasrAWoUzICJaGsQdJzcpHzBgAYo9MReZ_HtMLO7dsCv3eYPAaLRcJdaw6FD8XaYzLJrr01bW_74GKyuMXQFS2aFHxYFS7F7dDuiga3MeQumc73eknOnGkzXv3pmLzNH15nT-Xi5fF5dr8oLeeiKxUXrpFg2VQtlVTUIK8EY1ICc9aoRqIDoWopDUXecCqVY8qApbI2gpklH5ObYXeX4ucec6c3cZ9Cf1IzCariXFHoU2JI2RRzTuj0LvmtSQdNQR9B6o0eQOojSD2A7Gt3Qw37D756HjrbX0yNT2g73UT__8AP94V_jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509633910</pqid></control><display><type>article</type><title>Forgetful experience replay in hierarchical reinforcement learning from expert demonstrations</title><source>Elsevier ScienceDirect Journals</source><creator>Skrynnik, Alexey ; Staroverov, Aleksey ; Aitygulov, Ermek ; Aksenov, Kirill ; Davydov, Vasilii ; Panov, Aleksandr I.</creator><creatorcontrib>Skrynnik, Alexey ; Staroverov, Aleksey ; Aitygulov, Ermek ; Aksenov, Kirill ; Davydov, Vasilii ; Panov, Aleksandr I.</creatorcontrib><description>Deep reinforcement learning (RL) shows impressive results in complex gaming and robotic environments. These results are commonly achieved at the expense of huge computational costs and require an incredible number of episodes of interactions between the agent and the environment. Hierarchical methods and expert demonstrations are among the most promising approaches to improve the sample efficiency of reinforcement learning methods. In this paper, we propose a combination of methods that allow the agent to use low-quality demonstrations in complex vision-based environments with multiple related goals. Our Forgetful Experience Replay (ForgER) algorithm effectively handles expert data errors and reduces quality losses when adapting the action space and states representation to the agent’s capabilities. The proposed goal-oriented replay buffer structure allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations. Our method has a high degree of versatility and can be integrated into various off-policy methods. The ForgER surpasses the existing state-of-the-art RL methods using expert demonstrations in complex environments. The solution based on our algorithm beats other solutions for the famous MineRL competition and allows the agent to demonstrate the behavior at the expert level.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2021.106844</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Deep learning ; Expert demonstrations ; ForgER ; Goal-oriented reinforcement learning ; Hierarchical reinforcement learning ; Learning ; Learning from demonstrations ; Task complexity ; Task-oriented augmentation ; Teaching methods</subject><ispartof>Knowledge-based systems, 2021-04, Vol.218, p.106844, Article 106844</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 22, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-934fd50c289b9591ae364225502fca9d5ef049755a1e3d3159f29a0c157a42ab3</citedby><cites>FETCH-LOGICAL-c334t-934fd50c289b9591ae364225502fca9d5ef049755a1e3d3159f29a0c157a42ab3</cites><orcidid>0000-0002-9747-3837 ; 0000-0001-9243-1622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705121001076$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Skrynnik, Alexey</creatorcontrib><creatorcontrib>Staroverov, Aleksey</creatorcontrib><creatorcontrib>Aitygulov, Ermek</creatorcontrib><creatorcontrib>Aksenov, Kirill</creatorcontrib><creatorcontrib>Davydov, Vasilii</creatorcontrib><creatorcontrib>Panov, Aleksandr I.</creatorcontrib><title>Forgetful experience replay in hierarchical reinforcement learning from expert demonstrations</title><title>Knowledge-based systems</title><description>Deep reinforcement learning (RL) shows impressive results in complex gaming and robotic environments. These results are commonly achieved at the expense of huge computational costs and require an incredible number of episodes of interactions between the agent and the environment. Hierarchical methods and expert demonstrations are among the most promising approaches to improve the sample efficiency of reinforcement learning methods. In this paper, we propose a combination of methods that allow the agent to use low-quality demonstrations in complex vision-based environments with multiple related goals. Our Forgetful Experience Replay (ForgER) algorithm effectively handles expert data errors and reduces quality losses when adapting the action space and states representation to the agent’s capabilities. The proposed goal-oriented replay buffer structure allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations. Our method has a high degree of versatility and can be integrated into various off-policy methods. The ForgER surpasses the existing state-of-the-art RL methods using expert demonstrations in complex environments. The solution based on our algorithm beats other solutions for the famous MineRL competition and allows the agent to demonstrate the behavior at the expert level.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Expert demonstrations</subject><subject>ForgER</subject><subject>Goal-oriented reinforcement learning</subject><subject>Hierarchical reinforcement learning</subject><subject>Learning</subject><subject>Learning from demonstrations</subject><subject>Task complexity</subject><subject>Task-oriented augmentation</subject><subject>Teaching methods</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKvfwMOC560v_3abiyDFqlDwokcJafalTd0mNdmK_fZuXc-eBoaZebwfIdcUJhRodbuZfISYD3nCgNHeqqZCnJARndasrAWoUzICJaGsQdJzcpHzBgAYo9MReZ_HtMLO7dsCv3eYPAaLRcJdaw6FD8XaYzLJrr01bW_74GKyuMXQFS2aFHxYFS7F7dDuiga3MeQumc73eknOnGkzXv3pmLzNH15nT-Xi5fF5dr8oLeeiKxUXrpFg2VQtlVTUIK8EY1ICc9aoRqIDoWopDUXecCqVY8qApbI2gpklH5ObYXeX4ucec6c3cZ9Cf1IzCariXFHoU2JI2RRzTuj0LvmtSQdNQR9B6o0eQOojSD2A7Gt3Qw37D756HjrbX0yNT2g73UT__8AP94V_jw</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Skrynnik, Alexey</creator><creator>Staroverov, Aleksey</creator><creator>Aitygulov, Ermek</creator><creator>Aksenov, Kirill</creator><creator>Davydov, Vasilii</creator><creator>Panov, Aleksandr I.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9747-3837</orcidid><orcidid>https://orcid.org/0000-0001-9243-1622</orcidid></search><sort><creationdate>20210422</creationdate><title>Forgetful experience replay in hierarchical reinforcement learning from expert demonstrations</title><author>Skrynnik, Alexey ; Staroverov, Aleksey ; Aitygulov, Ermek ; Aksenov, Kirill ; Davydov, Vasilii ; Panov, Aleksandr I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-934fd50c289b9591ae364225502fca9d5ef049755a1e3d3159f29a0c157a42ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Expert demonstrations</topic><topic>ForgER</topic><topic>Goal-oriented reinforcement learning</topic><topic>Hierarchical reinforcement learning</topic><topic>Learning</topic><topic>Learning from demonstrations</topic><topic>Task complexity</topic><topic>Task-oriented augmentation</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skrynnik, Alexey</creatorcontrib><creatorcontrib>Staroverov, Aleksey</creatorcontrib><creatorcontrib>Aitygulov, Ermek</creatorcontrib><creatorcontrib>Aksenov, Kirill</creatorcontrib><creatorcontrib>Davydov, Vasilii</creatorcontrib><creatorcontrib>Panov, Aleksandr I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skrynnik, Alexey</au><au>Staroverov, Aleksey</au><au>Aitygulov, Ermek</au><au>Aksenov, Kirill</au><au>Davydov, Vasilii</au><au>Panov, Aleksandr I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forgetful experience replay in hierarchical reinforcement learning from expert demonstrations</atitle><jtitle>Knowledge-based systems</jtitle><date>2021-04-22</date><risdate>2021</risdate><volume>218</volume><spage>106844</spage><pages>106844-</pages><artnum>106844</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Deep reinforcement learning (RL) shows impressive results in complex gaming and robotic environments. These results are commonly achieved at the expense of huge computational costs and require an incredible number of episodes of interactions between the agent and the environment. Hierarchical methods and expert demonstrations are among the most promising approaches to improve the sample efficiency of reinforcement learning methods. In this paper, we propose a combination of methods that allow the agent to use low-quality demonstrations in complex vision-based environments with multiple related goals. Our Forgetful Experience Replay (ForgER) algorithm effectively handles expert data errors and reduces quality losses when adapting the action space and states representation to the agent’s capabilities. The proposed goal-oriented replay buffer structure allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations. Our method has a high degree of versatility and can be integrated into various off-policy methods. The ForgER surpasses the existing state-of-the-art RL methods using expert demonstrations in complex environments. The solution based on our algorithm beats other solutions for the famous MineRL competition and allows the agent to demonstrate the behavior at the expert level.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2021.106844</doi><orcidid>https://orcid.org/0000-0002-9747-3837</orcidid><orcidid>https://orcid.org/0000-0001-9243-1622</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2021-04, Vol.218, p.106844, Article 106844
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2509633910
source Elsevier ScienceDirect Journals
subjects Algorithms
Deep learning
Expert demonstrations
ForgER
Goal-oriented reinforcement learning
Hierarchical reinforcement learning
Learning
Learning from demonstrations
Task complexity
Task-oriented augmentation
Teaching methods
title Forgetful experience replay in hierarchical reinforcement learning from expert demonstrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forgetful%20experience%20replay%20in%20hierarchical%20reinforcement%20learning%20from%20expert%20demonstrations&rft.jtitle=Knowledge-based%20systems&rft.au=Skrynnik,%20Alexey&rft.date=2021-04-22&rft.volume=218&rft.spage=106844&rft.pages=106844-&rft.artnum=106844&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2021.106844&rft_dat=%3Cproquest_cross%3E2509633910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509633910&rft_id=info:pmid/&rft_els_id=S0950705121001076&rfr_iscdi=true