A gravitational search algorithm with hierarchy and distributed framework

Gravitational search algorithm is an effective population-based algorithm. It simulates the law of gravity to implement the interaction among particles. Although it can effectively optimize many problems, it generally suffers from premature convergence and low search capability. To address these lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2021-04, Vol.218, p.106877, Article 106877
Hauptverfasser: Wang, Yirui, Gao, Shangce, Yu, Yang, Cai, Zonghui, Wang, Ziqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106877
container_title Knowledge-based systems
container_volume 218
creator Wang, Yirui
Gao, Shangce
Yu, Yang
Cai, Zonghui
Wang, Ziqian
description Gravitational search algorithm is an effective population-based algorithm. It simulates the law of gravity to implement the interaction among particles. Although it can effectively optimize many problems, it generally suffers from premature convergence and low search capability. To address these limitations, a gravitational search algorithm with hierarchy and distributed framework is proposed. A distributed framework randomly groups several subpopulations and a three-layered hierarchy manages them. Communication among subpopulations finally enhances the search performance. Experiments discuss parameters and strategies of the proposed algorithm. Comparison between it and sixteen state-of-the-art algorithms demonstrates its superior performance. It also shows the practicality for two real-world optimization problems. •A new hierarchical and distributed gravitational search algorithm is proposed.•Its hierarchical and distributed structures exert different search effects.•Its performance is significantly enhanced in comparison with other algorithms.•It shows the practicality for real-world optimization problems.•Its computational efficiency is improved.
doi_str_mv 10.1016/j.knosys.2021.106877
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509629102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705121001404</els_id><sourcerecordid>2509629102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-684244df2cb7779ed8102e4a38c5496af91c4e85cf5af493c2d0cd9a23ba0f733</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEXA9dQkk5kkG6EUH4WCG12HNI8203ZSk7Sl_96Uce3mXjicc7j3A-ARowlGuH3uJps-pHOaEERwkVrO2BUYYc5IxSgS12CERIMqhhp8C-5S6hBChGA-AvMpXEV19FllH3q1hcmqqNdQbVch-rzewVOZcO1tvOhnqHoDjU85-uUhWwNdVDt7CnFzD26c2ib78LfH4Pvt9Wv2US0-3-ez6aLSdU1z1XJKKDWO6CVjTFjDMSKWqprrhopWOYE1tbzRrlGOiloTg7QRitRLhRyr6zF4Gnr3MfwcbMqyC4dYTk-SNEi0RJTC4qKDS8eQUrRO7qPfqXiWGMkLNNnJAZq8QJMDtBJ7GWK2fHAsT8ukve21NT5anaUJ_v-CX2qDeCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509629102</pqid></control><display><type>article</type><title>A gravitational search algorithm with hierarchy and distributed framework</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Yirui ; Gao, Shangce ; Yu, Yang ; Cai, Zonghui ; Wang, Ziqian</creator><creatorcontrib>Wang, Yirui ; Gao, Shangce ; Yu, Yang ; Cai, Zonghui ; Wang, Ziqian</creatorcontrib><description>Gravitational search algorithm is an effective population-based algorithm. It simulates the law of gravity to implement the interaction among particles. Although it can effectively optimize many problems, it generally suffers from premature convergence and low search capability. To address these limitations, a gravitational search algorithm with hierarchy and distributed framework is proposed. A distributed framework randomly groups several subpopulations and a three-layered hierarchy manages them. Communication among subpopulations finally enhances the search performance. Experiments discuss parameters and strategies of the proposed algorithm. Comparison between it and sixteen state-of-the-art algorithms demonstrates its superior performance. It also shows the practicality for two real-world optimization problems. •A new hierarchical and distributed gravitational search algorithm is proposed.•Its hierarchical and distributed structures exert different search effects.•Its performance is significantly enhanced in comparison with other algorithms.•It shows the practicality for real-world optimization problems.•Its computational efficiency is improved.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2021.106877</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Distributed framework ; Gravitational search algorithm ; Hierarchical interaction ; Hierarchy ; Optimization ; Population structure ; Search algorithms</subject><ispartof>Knowledge-based systems, 2021-04, Vol.218, p.106877, Article 106877</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 22, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-684244df2cb7779ed8102e4a38c5496af91c4e85cf5af493c2d0cd9a23ba0f733</citedby><cites>FETCH-LOGICAL-c334t-684244df2cb7779ed8102e4a38c5496af91c4e85cf5af493c2d0cd9a23ba0f733</cites><orcidid>0000-0001-5767-3343 ; 0000-0001-5042-3261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2021.106877$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Wang, Yirui</creatorcontrib><creatorcontrib>Gao, Shangce</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Cai, Zonghui</creatorcontrib><creatorcontrib>Wang, Ziqian</creatorcontrib><title>A gravitational search algorithm with hierarchy and distributed framework</title><title>Knowledge-based systems</title><description>Gravitational search algorithm is an effective population-based algorithm. It simulates the law of gravity to implement the interaction among particles. Although it can effectively optimize many problems, it generally suffers from premature convergence and low search capability. To address these limitations, a gravitational search algorithm with hierarchy and distributed framework is proposed. A distributed framework randomly groups several subpopulations and a three-layered hierarchy manages them. Communication among subpopulations finally enhances the search performance. Experiments discuss parameters and strategies of the proposed algorithm. Comparison between it and sixteen state-of-the-art algorithms demonstrates its superior performance. It also shows the practicality for two real-world optimization problems. •A new hierarchical and distributed gravitational search algorithm is proposed.•Its hierarchical and distributed structures exert different search effects.•Its performance is significantly enhanced in comparison with other algorithms.•It shows the practicality for real-world optimization problems.•Its computational efficiency is improved.</description><subject>Algorithms</subject><subject>Distributed framework</subject><subject>Gravitational search algorithm</subject><subject>Hierarchical interaction</subject><subject>Hierarchy</subject><subject>Optimization</subject><subject>Population structure</subject><subject>Search algorithms</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEXA9dQkk5kkG6EUH4WCG12HNI8203ZSk7Sl_96Uce3mXjicc7j3A-ARowlGuH3uJps-pHOaEERwkVrO2BUYYc5IxSgS12CERIMqhhp8C-5S6hBChGA-AvMpXEV19FllH3q1hcmqqNdQbVch-rzewVOZcO1tvOhnqHoDjU85-uUhWwNdVDt7CnFzD26c2ib78LfH4Pvt9Wv2US0-3-ez6aLSdU1z1XJKKDWO6CVjTFjDMSKWqprrhopWOYE1tbzRrlGOiloTg7QRitRLhRyr6zF4Gnr3MfwcbMqyC4dYTk-SNEi0RJTC4qKDS8eQUrRO7qPfqXiWGMkLNNnJAZq8QJMDtBJ7GWK2fHAsT8ukve21NT5anaUJ_v-CX2qDeCo</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Wang, Yirui</creator><creator>Gao, Shangce</creator><creator>Yu, Yang</creator><creator>Cai, Zonghui</creator><creator>Wang, Ziqian</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5767-3343</orcidid><orcidid>https://orcid.org/0000-0001-5042-3261</orcidid></search><sort><creationdate>20210422</creationdate><title>A gravitational search algorithm with hierarchy and distributed framework</title><author>Wang, Yirui ; Gao, Shangce ; Yu, Yang ; Cai, Zonghui ; Wang, Ziqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-684244df2cb7779ed8102e4a38c5496af91c4e85cf5af493c2d0cd9a23ba0f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Distributed framework</topic><topic>Gravitational search algorithm</topic><topic>Hierarchical interaction</topic><topic>Hierarchy</topic><topic>Optimization</topic><topic>Population structure</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yirui</creatorcontrib><creatorcontrib>Gao, Shangce</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Cai, Zonghui</creatorcontrib><creatorcontrib>Wang, Ziqian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yirui</au><au>Gao, Shangce</au><au>Yu, Yang</au><au>Cai, Zonghui</au><au>Wang, Ziqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gravitational search algorithm with hierarchy and distributed framework</atitle><jtitle>Knowledge-based systems</jtitle><date>2021-04-22</date><risdate>2021</risdate><volume>218</volume><spage>106877</spage><pages>106877-</pages><artnum>106877</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Gravitational search algorithm is an effective population-based algorithm. It simulates the law of gravity to implement the interaction among particles. Although it can effectively optimize many problems, it generally suffers from premature convergence and low search capability. To address these limitations, a gravitational search algorithm with hierarchy and distributed framework is proposed. A distributed framework randomly groups several subpopulations and a three-layered hierarchy manages them. Communication among subpopulations finally enhances the search performance. Experiments discuss parameters and strategies of the proposed algorithm. Comparison between it and sixteen state-of-the-art algorithms demonstrates its superior performance. It also shows the practicality for two real-world optimization problems. •A new hierarchical and distributed gravitational search algorithm is proposed.•Its hierarchical and distributed structures exert different search effects.•Its performance is significantly enhanced in comparison with other algorithms.•It shows the practicality for real-world optimization problems.•Its computational efficiency is improved.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2021.106877</doi><orcidid>https://orcid.org/0000-0001-5767-3343</orcidid><orcidid>https://orcid.org/0000-0001-5042-3261</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2021-04, Vol.218, p.106877, Article 106877
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2509629102
source Elsevier ScienceDirect Journals
subjects Algorithms
Distributed framework
Gravitational search algorithm
Hierarchical interaction
Hierarchy
Optimization
Population structure
Search algorithms
title A gravitational search algorithm with hierarchy and distributed framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gravitational%20search%20algorithm%20with%20hierarchy%20and%20distributed%20framework&rft.jtitle=Knowledge-based%20systems&rft.au=Wang,%20Yirui&rft.date=2021-04-22&rft.volume=218&rft.spage=106877&rft.pages=106877-&rft.artnum=106877&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2021.106877&rft_dat=%3Cproquest_cross%3E2509629102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509629102&rft_id=info:pmid/&rft_els_id=S0950705121001404&rfr_iscdi=true