Understanding the low frequency response of carbon nanotube thermoacoustic projectors

Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2021-04, Vol.498, p.115940, Article 115940
Hauptverfasser: Kumar, Prashant, Sriramdas, Rammohan, Aliev, Ali E., Blottman, John B., Mayo, Nathanael K., Baughman, Ray H., Priya, Shashank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115940
container_title Journal of sound and vibration
container_volume 498
creator Kumar, Prashant
Sriramdas, Rammohan
Aliev, Ali E.
Blottman, John B.
Mayo, Nathanael K.
Baughman, Ray H.
Priya, Shashank
description Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performance at low frequencies. Hence, there is a need to determine the governing parameters of TAPs that can be used to increase performance at low frequencies. A comprehensive, validated model is presented, involving structure-fluid-acoustic interactions, which sheds light on the physical behavior of CNT-based TAPs. The theoretical and numerical model incorporates all the controlling steps, from input electrical power to vibroacoustic wave generation in an outer fluid media. Using this model, the impact of the governing parameters on TAP performance has been studied.
doi_str_mv 10.1016/j.jsv.2021.115940
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509628591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X21000122</els_id><sourcerecordid>2509628591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2fea12f8a1c59375ba348b9af7313dc65195a8ce01a6416d9630f2dda940431c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF3A9dTcZJJOcCXFFxTcWHAXMnnoDG1Sk5mK_96Uce3qbs6555wPoWsgCyAgbvtFnw8LSigsALisyQmaAZG8arhoTtGMEEqrWpD3c3SRc08IkTWrZ2izCdalPOhgu_CBh0-Ht_Eb--S-RhfMD04u72PIDkePjU5tDDjoEIexdUd12kVt4piHzuB9ir0zQ0z5Ep15vc3u6u_O0ebx4W31XK1fn15W9-vKMNEMFfVOA_WNBsMlW_JWs7pppfZLBswawUFy3RhHQIsahJWCEU-t1WVfzcCwObqZ_pbo0jcPqo9jCiVSUU6koA2XUFQwqUyKOSfn1T51O51-FBB1pKd6VeipIz010Sueu8njSv1D55LKpitAnO1S2ahs7P5x_wKXc3jo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509628591</pqid></control><display><type>article</type><title>Understanding the low frequency response of carbon nanotube thermoacoustic projectors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kumar, Prashant ; Sriramdas, Rammohan ; Aliev, Ali E. ; Blottman, John B. ; Mayo, Nathanael K. ; Baughman, Ray H. ; Priya, Shashank</creator><creatorcontrib>Kumar, Prashant ; Sriramdas, Rammohan ; Aliev, Ali E. ; Blottman, John B. ; Mayo, Nathanael K. ; Baughman, Ray H. ; Priya, Shashank</creatorcontrib><description>Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performance at low frequencies. Hence, there is a need to determine the governing parameters of TAPs that can be used to increase performance at low frequencies. A comprehensive, validated model is presented, involving structure-fluid-acoustic interactions, which sheds light on the physical behavior of CNT-based TAPs. The theoretical and numerical model incorporates all the controlling steps, from input electrical power to vibroacoustic wave generation in an outer fluid media. Using this model, the impact of the governing parameters on TAP performance has been studied.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2021.115940</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Carbon ; Carbon nanotubes ; Frequencies ; Frequency response ; Heat transfer ; Low frequencies ; Mathematical models ; Nanotubes ; Numerical models ; Parameters ; Projectors ; Sound pressure ; Sound pressure level, Sonar projector ; Thermal diffusion length ; Thermoacoustics ; Wave generation</subject><ispartof>Journal of sound and vibration, 2021-04, Vol.498, p.115940, Article 115940</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 28, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2fea12f8a1c59375ba348b9af7313dc65195a8ce01a6416d9630f2dda940431c3</citedby><cites>FETCH-LOGICAL-c368t-2fea12f8a1c59375ba348b9af7313dc65195a8ce01a6416d9630f2dda940431c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X21000122$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Aliev, Ali E.</creatorcontrib><creatorcontrib>Blottman, John B.</creatorcontrib><creatorcontrib>Mayo, Nathanael K.</creatorcontrib><creatorcontrib>Baughman, Ray H.</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><title>Understanding the low frequency response of carbon nanotube thermoacoustic projectors</title><title>Journal of sound and vibration</title><description>Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performance at low frequencies. Hence, there is a need to determine the governing parameters of TAPs that can be used to increase performance at low frequencies. A comprehensive, validated model is presented, involving structure-fluid-acoustic interactions, which sheds light on the physical behavior of CNT-based TAPs. The theoretical and numerical model incorporates all the controlling steps, from input electrical power to vibroacoustic wave generation in an outer fluid media. Using this model, the impact of the governing parameters on TAP performance has been studied.</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Frequencies</subject><subject>Frequency response</subject><subject>Heat transfer</subject><subject>Low frequencies</subject><subject>Mathematical models</subject><subject>Nanotubes</subject><subject>Numerical models</subject><subject>Parameters</subject><subject>Projectors</subject><subject>Sound pressure</subject><subject>Sound pressure level, Sonar projector</subject><subject>Thermal diffusion length</subject><subject>Thermoacoustics</subject><subject>Wave generation</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF3A9dTcZJJOcCXFFxTcWHAXMnnoDG1Sk5mK_96Uce3qbs6555wPoWsgCyAgbvtFnw8LSigsALisyQmaAZG8arhoTtGMEEqrWpD3c3SRc08IkTWrZ2izCdalPOhgu_CBh0-Ht_Eb--S-RhfMD04u72PIDkePjU5tDDjoEIexdUd12kVt4piHzuB9ir0zQ0z5Ep15vc3u6u_O0ebx4W31XK1fn15W9-vKMNEMFfVOA_WNBsMlW_JWs7pppfZLBswawUFy3RhHQIsahJWCEU-t1WVfzcCwObqZ_pbo0jcPqo9jCiVSUU6koA2XUFQwqUyKOSfn1T51O51-FBB1pKd6VeipIz010Sueu8njSv1D55LKpitAnO1S2ahs7P5x_wKXc3jo</recordid><startdate>20210428</startdate><enddate>20210428</enddate><creator>Kumar, Prashant</creator><creator>Sriramdas, Rammohan</creator><creator>Aliev, Ali E.</creator><creator>Blottman, John B.</creator><creator>Mayo, Nathanael K.</creator><creator>Baughman, Ray H.</creator><creator>Priya, Shashank</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20210428</creationdate><title>Understanding the low frequency response of carbon nanotube thermoacoustic projectors</title><author>Kumar, Prashant ; Sriramdas, Rammohan ; Aliev, Ali E. ; Blottman, John B. ; Mayo, Nathanael K. ; Baughman, Ray H. ; Priya, Shashank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2fea12f8a1c59375ba348b9af7313dc65195a8ce01a6416d9630f2dda940431c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Frequencies</topic><topic>Frequency response</topic><topic>Heat transfer</topic><topic>Low frequencies</topic><topic>Mathematical models</topic><topic>Nanotubes</topic><topic>Numerical models</topic><topic>Parameters</topic><topic>Projectors</topic><topic>Sound pressure</topic><topic>Sound pressure level, Sonar projector</topic><topic>Thermal diffusion length</topic><topic>Thermoacoustics</topic><topic>Wave generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Aliev, Ali E.</creatorcontrib><creatorcontrib>Blottman, John B.</creatorcontrib><creatorcontrib>Mayo, Nathanael K.</creatorcontrib><creatorcontrib>Baughman, Ray H.</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Prashant</au><au>Sriramdas, Rammohan</au><au>Aliev, Ali E.</au><au>Blottman, John B.</au><au>Mayo, Nathanael K.</au><au>Baughman, Ray H.</au><au>Priya, Shashank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the low frequency response of carbon nanotube thermoacoustic projectors</atitle><jtitle>Journal of sound and vibration</jtitle><date>2021-04-28</date><risdate>2021</risdate><volume>498</volume><spage>115940</spage><pages>115940-</pages><artnum>115940</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performance at low frequencies. Hence, there is a need to determine the governing parameters of TAPs that can be used to increase performance at low frequencies. A comprehensive, validated model is presented, involving structure-fluid-acoustic interactions, which sheds light on the physical behavior of CNT-based TAPs. The theoretical and numerical model incorporates all the controlling steps, from input electrical power to vibroacoustic wave generation in an outer fluid media. Using this model, the impact of the governing parameters on TAP performance has been studied.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2021.115940</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2021-04, Vol.498, p.115940, Article 115940
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2509628591
source Elsevier ScienceDirect Journals Complete
subjects Carbon
Carbon nanotubes
Frequencies
Frequency response
Heat transfer
Low frequencies
Mathematical models
Nanotubes
Numerical models
Parameters
Projectors
Sound pressure
Sound pressure level, Sonar projector
Thermal diffusion length
Thermoacoustics
Wave generation
title Understanding the low frequency response of carbon nanotube thermoacoustic projectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20low%20frequency%20response%20of%20carbon%20nanotube%20thermoacoustic%20projectors&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Kumar,%20Prashant&rft.date=2021-04-28&rft.volume=498&rft.spage=115940&rft.pages=115940-&rft.artnum=115940&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2021.115940&rft_dat=%3Cproquest_cross%3E2509628591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509628591&rft_id=info:pmid/&rft_els_id=S0022460X21000122&rfr_iscdi=true