Understanding the low frequency response of carbon nanotube thermoacoustic projectors
Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performanc...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2021-04, Vol.498, p.115940, Article 115940 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115940 |
container_title | Journal of sound and vibration |
container_volume | 498 |
creator | Kumar, Prashant Sriramdas, Rammohan Aliev, Ali E. Blottman, John B. Mayo, Nathanael K. Baughman, Ray H. Priya, Shashank |
description | Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performance at low frequencies. Hence, there is a need to determine the governing parameters of TAPs that can be used to increase performance at low frequencies. A comprehensive, validated model is presented, involving structure-fluid-acoustic interactions, which sheds light on the physical behavior of CNT-based TAPs. The theoretical and numerical model incorporates all the controlling steps, from input electrical power to vibroacoustic wave generation in an outer fluid media. Using this model, the impact of the governing parameters on TAP performance has been studied. |
doi_str_mv | 10.1016/j.jsv.2021.115940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509628591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X21000122</els_id><sourcerecordid>2509628591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2fea12f8a1c59375ba348b9af7313dc65195a8ce01a6416d9630f2dda940431c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF3A9dTcZJJOcCXFFxTcWHAXMnnoDG1Sk5mK_96Uce3qbs6555wPoWsgCyAgbvtFnw8LSigsALisyQmaAZG8arhoTtGMEEqrWpD3c3SRc08IkTWrZ2izCdalPOhgu_CBh0-Ht_Eb--S-RhfMD04u72PIDkePjU5tDDjoEIexdUd12kVt4piHzuB9ir0zQ0z5Ep15vc3u6u_O0ebx4W31XK1fn15W9-vKMNEMFfVOA_WNBsMlW_JWs7pppfZLBswawUFy3RhHQIsahJWCEU-t1WVfzcCwObqZ_pbo0jcPqo9jCiVSUU6koA2XUFQwqUyKOSfn1T51O51-FBB1pKd6VeipIz010Sueu8njSv1D55LKpitAnO1S2ahs7P5x_wKXc3jo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509628591</pqid></control><display><type>article</type><title>Understanding the low frequency response of carbon nanotube thermoacoustic projectors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kumar, Prashant ; Sriramdas, Rammohan ; Aliev, Ali E. ; Blottman, John B. ; Mayo, Nathanael K. ; Baughman, Ray H. ; Priya, Shashank</creator><creatorcontrib>Kumar, Prashant ; Sriramdas, Rammohan ; Aliev, Ali E. ; Blottman, John B. ; Mayo, Nathanael K. ; Baughman, Ray H. ; Priya, Shashank</creatorcontrib><description>Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performance at low frequencies. Hence, there is a need to determine the governing parameters of TAPs that can be used to increase performance at low frequencies. A comprehensive, validated model is presented, involving structure-fluid-acoustic interactions, which sheds light on the physical behavior of CNT-based TAPs. The theoretical and numerical model incorporates all the controlling steps, from input electrical power to vibroacoustic wave generation in an outer fluid media. Using this model, the impact of the governing parameters on TAP performance has been studied.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2021.115940</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Carbon ; Carbon nanotubes ; Frequencies ; Frequency response ; Heat transfer ; Low frequencies ; Mathematical models ; Nanotubes ; Numerical models ; Parameters ; Projectors ; Sound pressure ; Sound pressure level, Sonar projector ; Thermal diffusion length ; Thermoacoustics ; Wave generation</subject><ispartof>Journal of sound and vibration, 2021-04, Vol.498, p.115940, Article 115940</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 28, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2fea12f8a1c59375ba348b9af7313dc65195a8ce01a6416d9630f2dda940431c3</citedby><cites>FETCH-LOGICAL-c368t-2fea12f8a1c59375ba348b9af7313dc65195a8ce01a6416d9630f2dda940431c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X21000122$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Aliev, Ali E.</creatorcontrib><creatorcontrib>Blottman, John B.</creatorcontrib><creatorcontrib>Mayo, Nathanael K.</creatorcontrib><creatorcontrib>Baughman, Ray H.</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><title>Understanding the low frequency response of carbon nanotube thermoacoustic projectors</title><title>Journal of sound and vibration</title><description>Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performance at low frequencies. Hence, there is a need to determine the governing parameters of TAPs that can be used to increase performance at low frequencies. A comprehensive, validated model is presented, involving structure-fluid-acoustic interactions, which sheds light on the physical behavior of CNT-based TAPs. The theoretical and numerical model incorporates all the controlling steps, from input electrical power to vibroacoustic wave generation in an outer fluid media. Using this model, the impact of the governing parameters on TAP performance has been studied.</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Frequencies</subject><subject>Frequency response</subject><subject>Heat transfer</subject><subject>Low frequencies</subject><subject>Mathematical models</subject><subject>Nanotubes</subject><subject>Numerical models</subject><subject>Parameters</subject><subject>Projectors</subject><subject>Sound pressure</subject><subject>Sound pressure level, Sonar projector</subject><subject>Thermal diffusion length</subject><subject>Thermoacoustics</subject><subject>Wave generation</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF3A9dTcZJJOcCXFFxTcWHAXMnnoDG1Sk5mK_96Uce3qbs6555wPoWsgCyAgbvtFnw8LSigsALisyQmaAZG8arhoTtGMEEqrWpD3c3SRc08IkTWrZ2izCdalPOhgu_CBh0-Ht_Eb--S-RhfMD04u72PIDkePjU5tDDjoEIexdUd12kVt4piHzuB9ir0zQ0z5Ep15vc3u6u_O0ebx4W31XK1fn15W9-vKMNEMFfVOA_WNBsMlW_JWs7pppfZLBswawUFy3RhHQIsahJWCEU-t1WVfzcCwObqZ_pbo0jcPqo9jCiVSUU6koA2XUFQwqUyKOSfn1T51O51-FBB1pKd6VeipIz010Sueu8njSv1D55LKpitAnO1S2ahs7P5x_wKXc3jo</recordid><startdate>20210428</startdate><enddate>20210428</enddate><creator>Kumar, Prashant</creator><creator>Sriramdas, Rammohan</creator><creator>Aliev, Ali E.</creator><creator>Blottman, John B.</creator><creator>Mayo, Nathanael K.</creator><creator>Baughman, Ray H.</creator><creator>Priya, Shashank</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20210428</creationdate><title>Understanding the low frequency response of carbon nanotube thermoacoustic projectors</title><author>Kumar, Prashant ; Sriramdas, Rammohan ; Aliev, Ali E. ; Blottman, John B. ; Mayo, Nathanael K. ; Baughman, Ray H. ; Priya, Shashank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2fea12f8a1c59375ba348b9af7313dc65195a8ce01a6416d9630f2dda940431c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Frequencies</topic><topic>Frequency response</topic><topic>Heat transfer</topic><topic>Low frequencies</topic><topic>Mathematical models</topic><topic>Nanotubes</topic><topic>Numerical models</topic><topic>Parameters</topic><topic>Projectors</topic><topic>Sound pressure</topic><topic>Sound pressure level, Sonar projector</topic><topic>Thermal diffusion length</topic><topic>Thermoacoustics</topic><topic>Wave generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Aliev, Ali E.</creatorcontrib><creatorcontrib>Blottman, John B.</creatorcontrib><creatorcontrib>Mayo, Nathanael K.</creatorcontrib><creatorcontrib>Baughman, Ray H.</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Prashant</au><au>Sriramdas, Rammohan</au><au>Aliev, Ali E.</au><au>Blottman, John B.</au><au>Mayo, Nathanael K.</au><au>Baughman, Ray H.</au><au>Priya, Shashank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the low frequency response of carbon nanotube thermoacoustic projectors</atitle><jtitle>Journal of sound and vibration</jtitle><date>2021-04-28</date><risdate>2021</risdate><volume>498</volume><spage>115940</spage><pages>115940-</pages><artnum>115940</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performance at low frequencies. Hence, there is a need to determine the governing parameters of TAPs that can be used to increase performance at low frequencies. A comprehensive, validated model is presented, involving structure-fluid-acoustic interactions, which sheds light on the physical behavior of CNT-based TAPs. The theoretical and numerical model incorporates all the controlling steps, from input electrical power to vibroacoustic wave generation in an outer fluid media. Using this model, the impact of the governing parameters on TAP performance has been studied.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2021.115940</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2021-04, Vol.498, p.115940, Article 115940 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2509628591 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Carbon Carbon nanotubes Frequencies Frequency response Heat transfer Low frequencies Mathematical models Nanotubes Numerical models Parameters Projectors Sound pressure Sound pressure level, Sonar projector Thermal diffusion length Thermoacoustics Wave generation |
title | Understanding the low frequency response of carbon nanotube thermoacoustic projectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20low%20frequency%20response%20of%20carbon%20nanotube%20thermoacoustic%20projectors&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Kumar,%20Prashant&rft.date=2021-04-28&rft.volume=498&rft.spage=115940&rft.pages=115940-&rft.artnum=115940&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2021.115940&rft_dat=%3Cproquest_cross%3E2509628591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509628591&rft_id=info:pmid/&rft_els_id=S0022460X21000122&rfr_iscdi=true |