Flow topology and targeted drug delivery in cardiovascular disease
Targeted drug delivery is a promising technique to direct the drug to the specific diseased region. Nanoparticles have provided an attractive approach for this purpose. In practice, the major focus of targeted delivery has been on targeting cell receptors. However, the complex fluid mechanics in dis...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2021-04, Vol.119, p.110307-110307, Article 110307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110307 |
---|---|
container_issue | |
container_start_page | 110307 |
container_title | Journal of biomechanics |
container_volume | 119 |
creator | Meschi, Sara S. Farghadan, Ali Arzani, Amirhossein |
description | Targeted drug delivery is a promising technique to direct the drug to the specific diseased region. Nanoparticles have provided an attractive approach for this purpose. In practice, the major focus of targeted delivery has been on targeting cell receptors. However, the complex fluid mechanics in diseased biomedical flows questions if a sufficient number of nanoparticles can reach the desired region. In this paper, we propose that hidden topological structures in cardiovascular flows identified with Lagrangian coherent structures (LCS) control drug transport and provide valuable information for optimizing targeted drug delivery efficiency. We couple image-based computational fluid dynamics (CFD) with continuum transport models to study nanoparticle transport in coronary artery disease. We simulate nanoparticle transport as well as the recently proposed shear targeted drug delivery system that couples micro-carriers with nanoparticle drugs. The role of the LCS formed near the stenosed artery in controlling drug transport is discussed. Our results motivate the design of smart micro-needles guided by flow topology, which could achieve optimal drug delivery efficiency. |
doi_str_mv | 10.1016/j.jbiomech.2021.110307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509596278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929021000877</els_id><sourcerecordid>2509596278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9096eed7d700173f2bd4aa3ad0071b13c488f9ce1f389c16d9c61e70677776ee3</originalsourceid><addsrcrecordid>eNqNkUFvFCEYhonR2HX1LzSTeDExs_LBFIabdmOrSRMveiYMfLMymR1WYLbZfy_NbHvwUrlAwvO--Xgg5BLoBiiIT8Nm6HzYo_29YZTBBoByKl-QFbSS14y39CVZ0XJTK6boBXmT0kAplY1Ur8kF50IKJtSKXN-M4b7K4RDGsDtVZnJVNnGHGV3l4ryrHI7-iPFU-amyJjofjibZeTSxcj6hSfiWvOrNmPDdeV-TXzdff26_1Xc_br9vv9zVliuRa0WVQHTSSUpB8p51rjGGG1emgg64bdq2Vxah562yIJyyAlBSIcsqSb4mH5beQwx_ZkxZ732yOI5mwjAnzRrVNq1gpXxN3v-DDmGOU5lOsyuqrpRgsi2UWCgbQ0oRe32Ifm_iSQPVD5b1oB8t6wfLerFcgpfn-rnbo3uKPWotwMcFuMcu9Ml6nCw-YeUfBFegGigngEK3_09vfTbZh2kb5imX6OclikX80WPU57jzEW3WLvjnHvMXUzWwmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509596278</pqid></control><display><type>article</type><title>Flow topology and targeted drug delivery in cardiovascular disease</title><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>ProQuest Central UK/Ireland</source><creator>Meschi, Sara S. ; Farghadan, Ali ; Arzani, Amirhossein</creator><creatorcontrib>Meschi, Sara S. ; Farghadan, Ali ; Arzani, Amirhossein</creatorcontrib><description>Targeted drug delivery is a promising technique to direct the drug to the specific diseased region. Nanoparticles have provided an attractive approach for this purpose. In practice, the major focus of targeted delivery has been on targeting cell receptors. However, the complex fluid mechanics in diseased biomedical flows questions if a sufficient number of nanoparticles can reach the desired region. In this paper, we propose that hidden topological structures in cardiovascular flows identified with Lagrangian coherent structures (LCS) control drug transport and provide valuable information for optimizing targeted drug delivery efficiency. We couple image-based computational fluid dynamics (CFD) with continuum transport models to study nanoparticle transport in coronary artery disease. We simulate nanoparticle transport as well as the recently proposed shear targeted drug delivery system that couples micro-carriers with nanoparticle drugs. The role of the LCS formed near the stenosed artery in controlling drug transport is discussed. Our results motivate the design of smart micro-needles guided by flow topology, which could achieve optimal drug delivery efficiency.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2021.110307</identifier><identifier>PMID: 33676269</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Atherosclerosis ; Biophysics ; Cardiovascular disease ; Cardiovascular diseases ; Computational fluid dynamics ; Computer applications ; Coronary artery ; Coronary artery disease ; Coronary artery stenosis ; Coronary vessels ; Design ; Drug delivery ; Drug delivery systems ; Drug development ; Engineering ; Engineering, Biomedical ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Heart diseases ; Hemodynamics ; Lagrangian coherent structure ; Life Sciences & Biomedicine ; Magnetic fields ; Nanoparticles ; Optimization ; Physics ; Science & Technology ; Technology ; Topology ; Transport ; Veins & arteries</subject><ispartof>Journal of biomechanics, 2021-04, Vol.119, p.110307-110307, Article 110307</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000639194100011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c396t-9096eed7d700173f2bd4aa3ad0071b13c488f9ce1f389c16d9c61e70677776ee3</citedby><cites>FETCH-LOGICAL-c396t-9096eed7d700173f2bd4aa3ad0071b13c488f9ce1f389c16d9c61e70677776ee3</cites><orcidid>0000-0002-3706-7909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2509596278?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33676269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meschi, Sara S.</creatorcontrib><creatorcontrib>Farghadan, Ali</creatorcontrib><creatorcontrib>Arzani, Amirhossein</creatorcontrib><title>Flow topology and targeted drug delivery in cardiovascular disease</title><title>Journal of biomechanics</title><addtitle>J BIOMECH</addtitle><addtitle>J Biomech</addtitle><description>Targeted drug delivery is a promising technique to direct the drug to the specific diseased region. Nanoparticles have provided an attractive approach for this purpose. In practice, the major focus of targeted delivery has been on targeting cell receptors. However, the complex fluid mechanics in diseased biomedical flows questions if a sufficient number of nanoparticles can reach the desired region. In this paper, we propose that hidden topological structures in cardiovascular flows identified with Lagrangian coherent structures (LCS) control drug transport and provide valuable information for optimizing targeted drug delivery efficiency. We couple image-based computational fluid dynamics (CFD) with continuum transport models to study nanoparticle transport in coronary artery disease. We simulate nanoparticle transport as well as the recently proposed shear targeted drug delivery system that couples micro-carriers with nanoparticle drugs. The role of the LCS formed near the stenosed artery in controlling drug transport is discussed. Our results motivate the design of smart micro-needles guided by flow topology, which could achieve optimal drug delivery efficiency.</description><subject>Atherosclerosis</subject><subject>Biophysics</subject><subject>Cardiovascular disease</subject><subject>Cardiovascular diseases</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Coronary artery</subject><subject>Coronary artery disease</subject><subject>Coronary artery stenosis</subject><subject>Coronary vessels</subject><subject>Design</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Drug development</subject><subject>Engineering</subject><subject>Engineering, Biomedical</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Heart diseases</subject><subject>Hemodynamics</subject><subject>Lagrangian coherent structure</subject><subject>Life Sciences & Biomedicine</subject><subject>Magnetic fields</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Physics</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Topology</subject><subject>Transport</subject><subject>Veins & arteries</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUFvFCEYhonR2HX1LzSTeDExs_LBFIabdmOrSRMveiYMfLMymR1WYLbZfy_NbHvwUrlAwvO--Xgg5BLoBiiIT8Nm6HzYo_29YZTBBoByKl-QFbSS14y39CVZ0XJTK6boBXmT0kAplY1Ur8kF50IKJtSKXN-M4b7K4RDGsDtVZnJVNnGHGV3l4ryrHI7-iPFU-amyJjofjibZeTSxcj6hSfiWvOrNmPDdeV-TXzdff26_1Xc_br9vv9zVliuRa0WVQHTSSUpB8p51rjGGG1emgg64bdq2Vxah562yIJyyAlBSIcsqSb4mH5beQwx_ZkxZ732yOI5mwjAnzRrVNq1gpXxN3v-DDmGOU5lOsyuqrpRgsi2UWCgbQ0oRe32Ifm_iSQPVD5b1oB8t6wfLerFcgpfn-rnbo3uKPWotwMcFuMcu9Ml6nCw-YeUfBFegGigngEK3_09vfTbZh2kb5imX6OclikX80WPU57jzEW3WLvjnHvMXUzWwmQ</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Meschi, Sara S.</creator><creator>Farghadan, Ali</creator><creator>Arzani, Amirhossein</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3706-7909</orcidid></search><sort><creationdate>20210415</creationdate><title>Flow topology and targeted drug delivery in cardiovascular disease</title><author>Meschi, Sara S. ; Farghadan, Ali ; Arzani, Amirhossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9096eed7d700173f2bd4aa3ad0071b13c488f9ce1f389c16d9c61e70677776ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atherosclerosis</topic><topic>Biophysics</topic><topic>Cardiovascular disease</topic><topic>Cardiovascular diseases</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Coronary artery</topic><topic>Coronary artery disease</topic><topic>Coronary artery stenosis</topic><topic>Coronary vessels</topic><topic>Design</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Drug development</topic><topic>Engineering</topic><topic>Engineering, Biomedical</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Heart diseases</topic><topic>Hemodynamics</topic><topic>Lagrangian coherent structure</topic><topic>Life Sciences & Biomedicine</topic><topic>Magnetic fields</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Physics</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Topology</topic><topic>Transport</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meschi, Sara S.</creatorcontrib><creatorcontrib>Farghadan, Ali</creatorcontrib><creatorcontrib>Arzani, Amirhossein</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meschi, Sara S.</au><au>Farghadan, Ali</au><au>Arzani, Amirhossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow topology and targeted drug delivery in cardiovascular disease</atitle><jtitle>Journal of biomechanics</jtitle><stitle>J BIOMECH</stitle><addtitle>J Biomech</addtitle><date>2021-04-15</date><risdate>2021</risdate><volume>119</volume><spage>110307</spage><epage>110307</epage><pages>110307-110307</pages><artnum>110307</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Targeted drug delivery is a promising technique to direct the drug to the specific diseased region. Nanoparticles have provided an attractive approach for this purpose. In practice, the major focus of targeted delivery has been on targeting cell receptors. However, the complex fluid mechanics in diseased biomedical flows questions if a sufficient number of nanoparticles can reach the desired region. In this paper, we propose that hidden topological structures in cardiovascular flows identified with Lagrangian coherent structures (LCS) control drug transport and provide valuable information for optimizing targeted drug delivery efficiency. We couple image-based computational fluid dynamics (CFD) with continuum transport models to study nanoparticle transport in coronary artery disease. We simulate nanoparticle transport as well as the recently proposed shear targeted drug delivery system that couples micro-carriers with nanoparticle drugs. The role of the LCS formed near the stenosed artery in controlling drug transport is discussed. Our results motivate the design of smart micro-needles guided by flow topology, which could achieve optimal drug delivery efficiency.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>33676269</pmid><doi>10.1016/j.jbiomech.2021.110307</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3706-7909</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2021-04, Vol.119, p.110307-110307, Article 110307 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_journals_2509596278 |
source | Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; ProQuest Central UK/Ireland |
subjects | Atherosclerosis Biophysics Cardiovascular disease Cardiovascular diseases Computational fluid dynamics Computer applications Coronary artery Coronary artery disease Coronary artery stenosis Coronary vessels Design Drug delivery Drug delivery systems Drug development Engineering Engineering, Biomedical Fluid dynamics Fluid flow Fluid mechanics Heart diseases Hemodynamics Lagrangian coherent structure Life Sciences & Biomedicine Magnetic fields Nanoparticles Optimization Physics Science & Technology Technology Topology Transport Veins & arteries |
title | Flow topology and targeted drug delivery in cardiovascular disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20topology%20and%20targeted%20drug%20delivery%20in%20cardiovascular%20disease&rft.jtitle=Journal%20of%20biomechanics&rft.au=Meschi,%20Sara%20S.&rft.date=2021-04-15&rft.volume=119&rft.spage=110307&rft.epage=110307&rft.pages=110307-110307&rft.artnum=110307&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2021.110307&rft_dat=%3Cproquest_cross%3E2509596278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509596278&rft_id=info:pmid/33676269&rft_els_id=S0021929021000877&rfr_iscdi=true |