Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes

Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-04, Vol.31 (15), p.n/a
Hauptverfasser: Pendse, Aaditya, Cetindag, Semih, Rehak, Pavel, Behura, Sanjay, Gao, Haiqi, Nguyen, Ngoc Hoang Lan, Wang, Tongshuai, Berry, Vikas, Král, Petr, Shan, Jerry, Kim, Sangil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page
container_title Advanced functional materials
container_volume 31
creator Pendse, Aaditya
Cetindag, Semih
Rehak, Pavel
Behura, Sanjay
Gao, Haiqi
Nguyen, Ngoc Hoang Lan
Wang, Tongshuai
Berry, Vikas
Král, Petr
Shan, Jerry
Kim, Sangil
description Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2 of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108 pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density. The vertically aligned boron nitride nanopore shows a high osmotic power generation efficiency of ≈100 W m−2, which is significantly higher than that of most macro‐scale systems. Experimental studies and molecular simulations are employed to demonstrate that the high surface charge of the boron nitride results in enhanced diffusio‐osmotic flows at a high salinity gradient, resulting in a huge increase in efficiency and power density.
doi_str_mv 10.1002/adfm.202009586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509575972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509575972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-c26aa79271a14880c960b3c34110cdcd42ddec7e4079ecc07590cfdfbe64ac43</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiTjk7TpyMpbQUqaVLB8QSubaTumrsYgdQNh6BZ-RJSFVURqb7h--_O30IXRMYEAB6K1RZDyhQgDzJ0hPUIylJoxhodnrM5PkcXYSwASCcx6yHXqamWm9bPC5LI422DV6E2jVG4rHVvmrxVPh3HRpjK2wsHq2Fr7TCd847-_359WQab5TeJ2HdznmN57peeWF1uERnpdgGffU7-2g5GS9H02i2eHgcDWeRjBOWRpKmQvCcciIIyzKQeQqrWMaMEJBKKkaV0pJrBjzXUgJPcpClKlc6ZUKyuI9uDmt33r2-da8WG_fmbXexoEmnouM57ajBgZLeheB1Wey8qYVvCwLFXl-x11cc9XWF_FD4MFvd_kMXw_vJ_K_7A6gGdr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509575972</pqid></control><display><type>article</type><title>Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes</title><source>Access via Wiley Online Library</source><creator>Pendse, Aaditya ; Cetindag, Semih ; Rehak, Pavel ; Behura, Sanjay ; Gao, Haiqi ; Nguyen, Ngoc Hoang Lan ; Wang, Tongshuai ; Berry, Vikas ; Král, Petr ; Shan, Jerry ; Kim, Sangil</creator><creatorcontrib>Pendse, Aaditya ; Cetindag, Semih ; Rehak, Pavel ; Behura, Sanjay ; Gao, Haiqi ; Nguyen, Ngoc Hoang Lan ; Wang, Tongshuai ; Berry, Vikas ; Král, Petr ; Shan, Jerry ; Kim, Sangil</creatorcontrib><description>Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2 of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108 pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density. The vertically aligned boron nitride nanopore shows a high osmotic power generation efficiency of ≈100 W m−2, which is significantly higher than that of most macro‐scale systems. Experimental studies and molecular simulations are employed to demonstrate that the high surface charge of the boron nitride results in enhanced diffusio‐osmotic flows at a high salinity gradient, resulting in a huge increase in efficiency and power density.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202009586</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; blue energy ; Boron ; boron nitride ; Chemical vapor deposition ; Clean energy ; diffusio‐osmosis ; Electric power generation ; Electrodialysis ; Electrokinetics ; Energy conversion efficiency ; Energy harvesting ; Fluidics ; ion transport ; Ionic mobility ; Materials science ; membrane ; Membranes ; Nanofluids ; Nitrides ; Osmosis ; osmotic energy harvesting ; Porosity ; Salinity</subject><ispartof>Advanced functional materials, 2021-04, Vol.31 (15), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-c26aa79271a14880c960b3c34110cdcd42ddec7e4079ecc07590cfdfbe64ac43</citedby><cites>FETCH-LOGICAL-c3546-c26aa79271a14880c960b3c34110cdcd42ddec7e4079ecc07590cfdfbe64ac43</cites><orcidid>0000-0002-5797-2703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202009586$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202009586$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pendse, Aaditya</creatorcontrib><creatorcontrib>Cetindag, Semih</creatorcontrib><creatorcontrib>Rehak, Pavel</creatorcontrib><creatorcontrib>Behura, Sanjay</creatorcontrib><creatorcontrib>Gao, Haiqi</creatorcontrib><creatorcontrib>Nguyen, Ngoc Hoang Lan</creatorcontrib><creatorcontrib>Wang, Tongshuai</creatorcontrib><creatorcontrib>Berry, Vikas</creatorcontrib><creatorcontrib>Král, Petr</creatorcontrib><creatorcontrib>Shan, Jerry</creatorcontrib><creatorcontrib>Kim, Sangil</creatorcontrib><title>Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes</title><title>Advanced functional materials</title><description>Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2 of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108 pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density. The vertically aligned boron nitride nanopore shows a high osmotic power generation efficiency of ≈100 W m−2, which is significantly higher than that of most macro‐scale systems. Experimental studies and molecular simulations are employed to demonstrate that the high surface charge of the boron nitride results in enhanced diffusio‐osmotic flows at a high salinity gradient, resulting in a huge increase in efficiency and power density.</description><subject>Aluminum oxide</subject><subject>blue energy</subject><subject>Boron</subject><subject>boron nitride</subject><subject>Chemical vapor deposition</subject><subject>Clean energy</subject><subject>diffusio‐osmosis</subject><subject>Electric power generation</subject><subject>Electrodialysis</subject><subject>Electrokinetics</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Fluidics</subject><subject>ion transport</subject><subject>Ionic mobility</subject><subject>Materials science</subject><subject>membrane</subject><subject>Membranes</subject><subject>Nanofluids</subject><subject>Nitrides</subject><subject>Osmosis</subject><subject>osmotic energy harvesting</subject><subject>Porosity</subject><subject>Salinity</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMltiTjk7TpyMpbQUqaVLB8QSubaTumrsYgdQNh6BZ-RJSFVURqb7h--_O30IXRMYEAB6K1RZDyhQgDzJ0hPUIylJoxhodnrM5PkcXYSwASCcx6yHXqamWm9bPC5LI422DV6E2jVG4rHVvmrxVPh3HRpjK2wsHq2Fr7TCd847-_359WQab5TeJ2HdznmN57peeWF1uERnpdgGffU7-2g5GS9H02i2eHgcDWeRjBOWRpKmQvCcciIIyzKQeQqrWMaMEJBKKkaV0pJrBjzXUgJPcpClKlc6ZUKyuI9uDmt33r2-da8WG_fmbXexoEmnouM57ajBgZLeheB1Wey8qYVvCwLFXl-x11cc9XWF_FD4MFvd_kMXw_vJ_K_7A6gGdr4</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Pendse, Aaditya</creator><creator>Cetindag, Semih</creator><creator>Rehak, Pavel</creator><creator>Behura, Sanjay</creator><creator>Gao, Haiqi</creator><creator>Nguyen, Ngoc Hoang Lan</creator><creator>Wang, Tongshuai</creator><creator>Berry, Vikas</creator><creator>Král, Petr</creator><creator>Shan, Jerry</creator><creator>Kim, Sangil</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5797-2703</orcidid></search><sort><creationdate>20210401</creationdate><title>Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes</title><author>Pendse, Aaditya ; Cetindag, Semih ; Rehak, Pavel ; Behura, Sanjay ; Gao, Haiqi ; Nguyen, Ngoc Hoang Lan ; Wang, Tongshuai ; Berry, Vikas ; Král, Petr ; Shan, Jerry ; Kim, Sangil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-c26aa79271a14880c960b3c34110cdcd42ddec7e4079ecc07590cfdfbe64ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>blue energy</topic><topic>Boron</topic><topic>boron nitride</topic><topic>Chemical vapor deposition</topic><topic>Clean energy</topic><topic>diffusio‐osmosis</topic><topic>Electric power generation</topic><topic>Electrodialysis</topic><topic>Electrokinetics</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Fluidics</topic><topic>ion transport</topic><topic>Ionic mobility</topic><topic>Materials science</topic><topic>membrane</topic><topic>Membranes</topic><topic>Nanofluids</topic><topic>Nitrides</topic><topic>Osmosis</topic><topic>osmotic energy harvesting</topic><topic>Porosity</topic><topic>Salinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pendse, Aaditya</creatorcontrib><creatorcontrib>Cetindag, Semih</creatorcontrib><creatorcontrib>Rehak, Pavel</creatorcontrib><creatorcontrib>Behura, Sanjay</creatorcontrib><creatorcontrib>Gao, Haiqi</creatorcontrib><creatorcontrib>Nguyen, Ngoc Hoang Lan</creatorcontrib><creatorcontrib>Wang, Tongshuai</creatorcontrib><creatorcontrib>Berry, Vikas</creatorcontrib><creatorcontrib>Král, Petr</creatorcontrib><creatorcontrib>Shan, Jerry</creatorcontrib><creatorcontrib>Kim, Sangil</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pendse, Aaditya</au><au>Cetindag, Semih</au><au>Rehak, Pavel</au><au>Behura, Sanjay</au><au>Gao, Haiqi</au><au>Nguyen, Ngoc Hoang Lan</au><au>Wang, Tongshuai</au><au>Berry, Vikas</au><au>Král, Petr</au><au>Shan, Jerry</au><au>Kim, Sangil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes</atitle><jtitle>Advanced functional materials</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>15</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2 of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108 pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density. The vertically aligned boron nitride nanopore shows a high osmotic power generation efficiency of ≈100 W m−2, which is significantly higher than that of most macro‐scale systems. Experimental studies and molecular simulations are employed to demonstrate that the high surface charge of the boron nitride results in enhanced diffusio‐osmotic flows at a high salinity gradient, resulting in a huge increase in efficiency and power density.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202009586</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5797-2703</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-04, Vol.31 (15), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2509575972
source Access via Wiley Online Library
subjects Aluminum oxide
blue energy
Boron
boron nitride
Chemical vapor deposition
Clean energy
diffusio‐osmosis
Electric power generation
Electrodialysis
Electrokinetics
Energy conversion efficiency
Energy harvesting
Fluidics
ion transport
Ionic mobility
Materials science
membrane
Membranes
Nanofluids
Nitrides
Osmosis
osmotic energy harvesting
Porosity
Salinity
title Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Osmotic%20Energy%20Harvesting%20in%20Charged%20Boron%E2%80%90Nitride%E2%80%90Nanopore%20Membranes&rft.jtitle=Advanced%20functional%20materials&rft.au=Pendse,%20Aaditya&rft.date=2021-04-01&rft.volume=31&rft.issue=15&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202009586&rft_dat=%3Cproquest_cross%3E2509575972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509575972&rft_id=info:pmid/&rfr_iscdi=true