Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes
Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐R...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-04, Vol.31 (15), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Pendse, Aaditya Cetindag, Semih Rehak, Pavel Behura, Sanjay Gao, Haiqi Nguyen, Ngoc Hoang Lan Wang, Tongshuai Berry, Vikas Král, Petr Shan, Jerry Kim, Sangil |
description | Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2 of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108 pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density.
The vertically aligned boron nitride nanopore shows a high osmotic power generation efficiency of ≈100 W m−2, which is significantly higher than that of most macro‐scale systems. Experimental studies and molecular simulations are employed to demonstrate that the high surface charge of the boron nitride results in enhanced diffusio‐osmotic flows at a high salinity gradient, resulting in a huge increase in efficiency and power density. |
doi_str_mv | 10.1002/adfm.202009586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509575972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509575972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-c26aa79271a14880c960b3c34110cdcd42ddec7e4079ecc07590cfdfbe64ac43</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiTjk7TpyMpbQUqaVLB8QSubaTumrsYgdQNh6BZ-RJSFVURqb7h--_O30IXRMYEAB6K1RZDyhQgDzJ0hPUIylJoxhodnrM5PkcXYSwASCcx6yHXqamWm9bPC5LI422DV6E2jVG4rHVvmrxVPh3HRpjK2wsHq2Fr7TCd847-_359WQab5TeJ2HdznmN57peeWF1uERnpdgGffU7-2g5GS9H02i2eHgcDWeRjBOWRpKmQvCcciIIyzKQeQqrWMaMEJBKKkaV0pJrBjzXUgJPcpClKlc6ZUKyuI9uDmt33r2-da8WG_fmbXexoEmnouM57ajBgZLeheB1Wey8qYVvCwLFXl-x11cc9XWF_FD4MFvd_kMXw_vJ_K_7A6gGdr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509575972</pqid></control><display><type>article</type><title>Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes</title><source>Access via Wiley Online Library</source><creator>Pendse, Aaditya ; Cetindag, Semih ; Rehak, Pavel ; Behura, Sanjay ; Gao, Haiqi ; Nguyen, Ngoc Hoang Lan ; Wang, Tongshuai ; Berry, Vikas ; Král, Petr ; Shan, Jerry ; Kim, Sangil</creator><creatorcontrib>Pendse, Aaditya ; Cetindag, Semih ; Rehak, Pavel ; Behura, Sanjay ; Gao, Haiqi ; Nguyen, Ngoc Hoang Lan ; Wang, Tongshuai ; Berry, Vikas ; Král, Petr ; Shan, Jerry ; Kim, Sangil</creatorcontrib><description>Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2 of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108 pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density.
The vertically aligned boron nitride nanopore shows a high osmotic power generation efficiency of ≈100 W m−2, which is significantly higher than that of most macro‐scale systems. Experimental studies and molecular simulations are employed to demonstrate that the high surface charge of the boron nitride results in enhanced diffusio‐osmotic flows at a high salinity gradient, resulting in a huge increase in efficiency and power density.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202009586</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; blue energy ; Boron ; boron nitride ; Chemical vapor deposition ; Clean energy ; diffusio‐osmosis ; Electric power generation ; Electrodialysis ; Electrokinetics ; Energy conversion efficiency ; Energy harvesting ; Fluidics ; ion transport ; Ionic mobility ; Materials science ; membrane ; Membranes ; Nanofluids ; Nitrides ; Osmosis ; osmotic energy harvesting ; Porosity ; Salinity</subject><ispartof>Advanced functional materials, 2021-04, Vol.31 (15), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-c26aa79271a14880c960b3c34110cdcd42ddec7e4079ecc07590cfdfbe64ac43</citedby><cites>FETCH-LOGICAL-c3546-c26aa79271a14880c960b3c34110cdcd42ddec7e4079ecc07590cfdfbe64ac43</cites><orcidid>0000-0002-5797-2703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202009586$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202009586$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pendse, Aaditya</creatorcontrib><creatorcontrib>Cetindag, Semih</creatorcontrib><creatorcontrib>Rehak, Pavel</creatorcontrib><creatorcontrib>Behura, Sanjay</creatorcontrib><creatorcontrib>Gao, Haiqi</creatorcontrib><creatorcontrib>Nguyen, Ngoc Hoang Lan</creatorcontrib><creatorcontrib>Wang, Tongshuai</creatorcontrib><creatorcontrib>Berry, Vikas</creatorcontrib><creatorcontrib>Král, Petr</creatorcontrib><creatorcontrib>Shan, Jerry</creatorcontrib><creatorcontrib>Kim, Sangil</creatorcontrib><title>Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes</title><title>Advanced functional materials</title><description>Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2 of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108 pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density.
The vertically aligned boron nitride nanopore shows a high osmotic power generation efficiency of ≈100 W m−2, which is significantly higher than that of most macro‐scale systems. Experimental studies and molecular simulations are employed to demonstrate that the high surface charge of the boron nitride results in enhanced diffusio‐osmotic flows at a high salinity gradient, resulting in a huge increase in efficiency and power density.</description><subject>Aluminum oxide</subject><subject>blue energy</subject><subject>Boron</subject><subject>boron nitride</subject><subject>Chemical vapor deposition</subject><subject>Clean energy</subject><subject>diffusio‐osmosis</subject><subject>Electric power generation</subject><subject>Electrodialysis</subject><subject>Electrokinetics</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Fluidics</subject><subject>ion transport</subject><subject>Ionic mobility</subject><subject>Materials science</subject><subject>membrane</subject><subject>Membranes</subject><subject>Nanofluids</subject><subject>Nitrides</subject><subject>Osmosis</subject><subject>osmotic energy harvesting</subject><subject>Porosity</subject><subject>Salinity</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMltiTjk7TpyMpbQUqaVLB8QSubaTumrsYgdQNh6BZ-RJSFVURqb7h--_O30IXRMYEAB6K1RZDyhQgDzJ0hPUIylJoxhodnrM5PkcXYSwASCcx6yHXqamWm9bPC5LI422DV6E2jVG4rHVvmrxVPh3HRpjK2wsHq2Fr7TCd847-_359WQab5TeJ2HdznmN57peeWF1uERnpdgGffU7-2g5GS9H02i2eHgcDWeRjBOWRpKmQvCcciIIyzKQeQqrWMaMEJBKKkaV0pJrBjzXUgJPcpClKlc6ZUKyuI9uDmt33r2-da8WG_fmbXexoEmnouM57ajBgZLeheB1Wey8qYVvCwLFXl-x11cc9XWF_FD4MFvd_kMXw_vJ_K_7A6gGdr4</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Pendse, Aaditya</creator><creator>Cetindag, Semih</creator><creator>Rehak, Pavel</creator><creator>Behura, Sanjay</creator><creator>Gao, Haiqi</creator><creator>Nguyen, Ngoc Hoang Lan</creator><creator>Wang, Tongshuai</creator><creator>Berry, Vikas</creator><creator>Král, Petr</creator><creator>Shan, Jerry</creator><creator>Kim, Sangil</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5797-2703</orcidid></search><sort><creationdate>20210401</creationdate><title>Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes</title><author>Pendse, Aaditya ; Cetindag, Semih ; Rehak, Pavel ; Behura, Sanjay ; Gao, Haiqi ; Nguyen, Ngoc Hoang Lan ; Wang, Tongshuai ; Berry, Vikas ; Král, Petr ; Shan, Jerry ; Kim, Sangil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-c26aa79271a14880c960b3c34110cdcd42ddec7e4079ecc07590cfdfbe64ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>blue energy</topic><topic>Boron</topic><topic>boron nitride</topic><topic>Chemical vapor deposition</topic><topic>Clean energy</topic><topic>diffusio‐osmosis</topic><topic>Electric power generation</topic><topic>Electrodialysis</topic><topic>Electrokinetics</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Fluidics</topic><topic>ion transport</topic><topic>Ionic mobility</topic><topic>Materials science</topic><topic>membrane</topic><topic>Membranes</topic><topic>Nanofluids</topic><topic>Nitrides</topic><topic>Osmosis</topic><topic>osmotic energy harvesting</topic><topic>Porosity</topic><topic>Salinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pendse, Aaditya</creatorcontrib><creatorcontrib>Cetindag, Semih</creatorcontrib><creatorcontrib>Rehak, Pavel</creatorcontrib><creatorcontrib>Behura, Sanjay</creatorcontrib><creatorcontrib>Gao, Haiqi</creatorcontrib><creatorcontrib>Nguyen, Ngoc Hoang Lan</creatorcontrib><creatorcontrib>Wang, Tongshuai</creatorcontrib><creatorcontrib>Berry, Vikas</creatorcontrib><creatorcontrib>Král, Petr</creatorcontrib><creatorcontrib>Shan, Jerry</creatorcontrib><creatorcontrib>Kim, Sangil</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pendse, Aaditya</au><au>Cetindag, Semih</au><au>Rehak, Pavel</au><au>Behura, Sanjay</au><au>Gao, Haiqi</au><au>Nguyen, Ngoc Hoang Lan</au><au>Wang, Tongshuai</au><au>Berry, Vikas</au><au>Král, Petr</au><au>Shan, Jerry</au><au>Kim, Sangil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes</atitle><jtitle>Advanced functional materials</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>15</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2 of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108 pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density.
The vertically aligned boron nitride nanopore shows a high osmotic power generation efficiency of ≈100 W m−2, which is significantly higher than that of most macro‐scale systems. Experimental studies and molecular simulations are employed to demonstrate that the high surface charge of the boron nitride results in enhanced diffusio‐osmotic flows at a high salinity gradient, resulting in a huge increase in efficiency and power density.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202009586</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5797-2703</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-04, Vol.31 (15), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2509575972 |
source | Access via Wiley Online Library |
subjects | Aluminum oxide blue energy Boron boron nitride Chemical vapor deposition Clean energy diffusio‐osmosis Electric power generation Electrodialysis Electrokinetics Energy conversion efficiency Energy harvesting Fluidics ion transport Ionic mobility Materials science membrane Membranes Nanofluids Nitrides Osmosis osmotic energy harvesting Porosity Salinity |
title | Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Osmotic%20Energy%20Harvesting%20in%20Charged%20Boron%E2%80%90Nitride%E2%80%90Nanopore%20Membranes&rft.jtitle=Advanced%20functional%20materials&rft.au=Pendse,%20Aaditya&rft.date=2021-04-01&rft.volume=31&rft.issue=15&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202009586&rft_dat=%3Cproquest_cross%3E2509575972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509575972&rft_id=info:pmid/&rfr_iscdi=true |