Irreversibility analysis of nanofluid flow in a vertical microchannel with the influence of particle shape

Augmentation of thermal performance in heat transfer system has become research hotspot nowadays. Numerous techniques are carried out to pick up the effective heat transport mechanism for designing high efficient thermal frameworks which has extensive practical uses in industrial process. In the cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2021-04, Vol.235 (2), p.312-320
Hauptverfasser: Sindhu, S, Gireesha, BJ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 2
container_start_page 312
container_title Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering
container_volume 235
creator Sindhu, S
Gireesha, BJ
description Augmentation of thermal performance in heat transfer system has become research hotspot nowadays. Numerous techniques are carried out to pick up the effective heat transport mechanism for designing high efficient thermal frameworks which has extensive practical uses in industrial process. In the current study, mixture model has been implemented for better describing the characteristics of nanoparticles in a vertical microchannel. The nondimensional equations are computed by using Runge Kutta Fehlberg method. Effect of heat source, buoyancy force and convective boundary on the thermal system has been demonstrated. The role of spheroidal nanoparticles on thermal conductivity of the conventional fluid has been examined. The causes of irreversibilities in a microchannel due to nanoliquid flow has been reported in the current research work. It is obtained that Aluminum foam has higher thermal field compared to Al2O3. Entropy generation is reduced by lowering Eckert number and Grashof number. It is explored that nanofluid containing oblate shaped nanoparticels has higher thermal conductivity ratio.
doi_str_mv 10.1177/0954408920958110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509528712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954408920958110</sage_id><sourcerecordid>2509528712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-c4645fa4c142c8d1b3a82cb39883d1d556b384db6fe2a7866014b86c0a44f0633</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouH7cPQY8VycfbdOjLH4sLHjRc5mmic2SbWvSddn_3pQVBMG5zMD7vYH3CLlhcMdYWd5DlUsJquLpUIzBCVlwkCwTANUpWcxyNuvn5CLGDaSRUC7IZhWC-TIhusZ5Nx0o9ugP0UU6WNpjP1i_cy21fthT11OkiZ2cRk-3TodBd9j3xtO9mzo6dSYxyWB6bWb_iDPrDY0djuaKnFn00Vz_7Evy_vT4tnzJ1q_Pq-XDOtMCqinTspC5RamZ5Fq1rBGouG5EpZRoWZvnRSOUbJvCGo6lKgpgslGFBpTSQiHEJbk9_h3D8Lkzcao3wy6kWLHmeeqBq5LxRMGRSiliDMbWY3BbDIeaQT03Wv9tNFmyoyXih_l9-i__De9odkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509528712</pqid></control><display><type>article</type><title>Irreversibility analysis of nanofluid flow in a vertical microchannel with the influence of particle shape</title><source>SAGE Complete A-Z List</source><creator>Sindhu, S ; Gireesha, BJ</creator><creatorcontrib>Sindhu, S ; Gireesha, BJ</creatorcontrib><description>Augmentation of thermal performance in heat transfer system has become research hotspot nowadays. Numerous techniques are carried out to pick up the effective heat transport mechanism for designing high efficient thermal frameworks which has extensive practical uses in industrial process. In the current study, mixture model has been implemented for better describing the characteristics of nanoparticles in a vertical microchannel. The nondimensional equations are computed by using Runge Kutta Fehlberg method. Effect of heat source, buoyancy force and convective boundary on the thermal system has been demonstrated. The role of spheroidal nanoparticles on thermal conductivity of the conventional fluid has been examined. The causes of irreversibilities in a microchannel due to nanoliquid flow has been reported in the current research work. It is obtained that Aluminum foam has higher thermal field compared to Al2O3. Entropy generation is reduced by lowering Eckert number and Grashof number. It is explored that nanofluid containing oblate shaped nanoparticels has higher thermal conductivity ratio.</description><identifier>ISSN: 0954-4089</identifier><identifier>EISSN: 2041-3009</identifier><identifier>DOI: 10.1177/0954408920958110</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aluminum oxide ; Computational fluid dynamics ; Fluid flow ; Grashof number ; Heat conductivity ; Heat transfer ; Metal foams ; Microchannels ; Nanofluids ; Nanoparticles ; Particle shape ; Runge-Kutta method ; Thermal conductivity</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2021-04, Vol.235 (2), p.312-320</ispartof><rights>IMechE 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-c4645fa4c142c8d1b3a82cb39883d1d556b384db6fe2a7866014b86c0a44f0633</citedby><cites>FETCH-LOGICAL-c309t-c4645fa4c142c8d1b3a82cb39883d1d556b384db6fe2a7866014b86c0a44f0633</cites><orcidid>0000-0002-4761-1082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954408920958110$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954408920958110$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21800,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Sindhu, S</creatorcontrib><creatorcontrib>Gireesha, BJ</creatorcontrib><title>Irreversibility analysis of nanofluid flow in a vertical microchannel with the influence of particle shape</title><title>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</title><description>Augmentation of thermal performance in heat transfer system has become research hotspot nowadays. Numerous techniques are carried out to pick up the effective heat transport mechanism for designing high efficient thermal frameworks which has extensive practical uses in industrial process. In the current study, mixture model has been implemented for better describing the characteristics of nanoparticles in a vertical microchannel. The nondimensional equations are computed by using Runge Kutta Fehlberg method. Effect of heat source, buoyancy force and convective boundary on the thermal system has been demonstrated. The role of spheroidal nanoparticles on thermal conductivity of the conventional fluid has been examined. The causes of irreversibilities in a microchannel due to nanoliquid flow has been reported in the current research work. It is obtained that Aluminum foam has higher thermal field compared to Al2O3. Entropy generation is reduced by lowering Eckert number and Grashof number. It is explored that nanofluid containing oblate shaped nanoparticels has higher thermal conductivity ratio.</description><subject>Aluminum oxide</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Grashof number</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Metal foams</subject><subject>Microchannels</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Particle shape</subject><subject>Runge-Kutta method</subject><subject>Thermal conductivity</subject><issn>0954-4089</issn><issn>2041-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouH7cPQY8VycfbdOjLH4sLHjRc5mmic2SbWvSddn_3pQVBMG5zMD7vYH3CLlhcMdYWd5DlUsJquLpUIzBCVlwkCwTANUpWcxyNuvn5CLGDaSRUC7IZhWC-TIhusZ5Nx0o9ugP0UU6WNpjP1i_cy21fthT11OkiZ2cRk-3TodBd9j3xtO9mzo6dSYxyWB6bWb_iDPrDY0djuaKnFn00Vz_7Evy_vT4tnzJ1q_Pq-XDOtMCqinTspC5RamZ5Fq1rBGouG5EpZRoWZvnRSOUbJvCGo6lKgpgslGFBpTSQiHEJbk9_h3D8Lkzcao3wy6kWLHmeeqBq5LxRMGRSiliDMbWY3BbDIeaQT03Wv9tNFmyoyXih_l9-i__De9odkc</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Sindhu, S</creator><creator>Gireesha, BJ</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-4761-1082</orcidid></search><sort><creationdate>202104</creationdate><title>Irreversibility analysis of nanofluid flow in a vertical microchannel with the influence of particle shape</title><author>Sindhu, S ; Gireesha, BJ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-c4645fa4c142c8d1b3a82cb39883d1d556b384db6fe2a7866014b86c0a44f0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Grashof number</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Metal foams</topic><topic>Microchannels</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Particle shape</topic><topic>Runge-Kutta method</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sindhu, S</creatorcontrib><creatorcontrib>Gireesha, BJ</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sindhu, S</au><au>Gireesha, BJ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irreversibility analysis of nanofluid flow in a vertical microchannel with the influence of particle shape</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle><date>2021-04</date><risdate>2021</risdate><volume>235</volume><issue>2</issue><spage>312</spage><epage>320</epage><pages>312-320</pages><issn>0954-4089</issn><eissn>2041-3009</eissn><abstract>Augmentation of thermal performance in heat transfer system has become research hotspot nowadays. Numerous techniques are carried out to pick up the effective heat transport mechanism for designing high efficient thermal frameworks which has extensive practical uses in industrial process. In the current study, mixture model has been implemented for better describing the characteristics of nanoparticles in a vertical microchannel. The nondimensional equations are computed by using Runge Kutta Fehlberg method. Effect of heat source, buoyancy force and convective boundary on the thermal system has been demonstrated. The role of spheroidal nanoparticles on thermal conductivity of the conventional fluid has been examined. The causes of irreversibilities in a microchannel due to nanoliquid flow has been reported in the current research work. It is obtained that Aluminum foam has higher thermal field compared to Al2O3. Entropy generation is reduced by lowering Eckert number and Grashof number. It is explored that nanofluid containing oblate shaped nanoparticels has higher thermal conductivity ratio.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954408920958110</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4761-1082</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4089
ispartof Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2021-04, Vol.235 (2), p.312-320
issn 0954-4089
2041-3009
language eng
recordid cdi_proquest_journals_2509528712
source SAGE Complete A-Z List
subjects Aluminum oxide
Computational fluid dynamics
Fluid flow
Grashof number
Heat conductivity
Heat transfer
Metal foams
Microchannels
Nanofluids
Nanoparticles
Particle shape
Runge-Kutta method
Thermal conductivity
title Irreversibility analysis of nanofluid flow in a vertical microchannel with the influence of particle shape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irreversibility%20analysis%20of%20nanofluid%20flow%20in%20a%20vertical%20microchannel%20with%20the%20influence%20of%20particle%20shape&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20E,%20Journal%20of%20process%20mechanical%20engineering&rft.au=Sindhu,%20S&rft.date=2021-04&rft.volume=235&rft.issue=2&rft.spage=312&rft.epage=320&rft.pages=312-320&rft.issn=0954-4089&rft.eissn=2041-3009&rft_id=info:doi/10.1177/0954408920958110&rft_dat=%3Cproquest_cross%3E2509528712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509528712&rft_id=info:pmid/&rft_sage_id=10.1177_0954408920958110&rfr_iscdi=true