Generalized linear mixed hidden semi‐Markov models in longitudinal settings: A Bayesian approach

Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2021-05, Vol.40 (10), p.2373-2388
Hauptverfasser: Haji‐Maghsoudi, Saiedeh, Bulla, Jan, Sadeghifar, Majid, Roshanaei, Ghodratollah, Mahjub, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2388
container_issue 10
container_start_page 2373
container_title Statistics in medicine
container_volume 40
creator Haji‐Maghsoudi, Saiedeh
Bulla, Jan
Sadeghifar, Majid
Roshanaei, Ghodratollah
Mahjub, Hossein
description Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count‐type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi‐Markov models (GLM‐HSMMs). These models can account for time‐varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton‐Raphson (MCNR)‐like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM‐HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR‐like algorithm through a simulation study.
doi_str_mv 10.1002/sim.8908
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509448446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509448446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3108-1983915dcb4aa4cf9505714821f87ca86c8a012df6dcebefbf958c848bc86a6e3</originalsourceid><addsrcrecordid>eNp1kDFOwzAUQC0EoqUgcQJkiYUlxU7sxGErFZRKrRiA2XJsp3VJnGKnQJk4AmfkJLgU2Ji-vvT0_tcD4BijPkYoPvem7rMcsR3QxSjPIhRTtgu6KM6yKM0w7YAD7xcIYUzjbB90koQyRnHaBcVIW-1EZd60gpWxWjhYm9ewzI1S2kKva_P5_jEV7rF5hnWjdOWhsbBq7My0K2WsqALUtsbO_AUcwEux1t4IC8Vy6Roh54dgrxSV10c_swcerq_uhzfR5HY0Hg4mkUwwYhHOWZJjqmRBhCCyzCmiGSYsxiXLpGCpZALhWJWpkrrQZREIJhlhhWSpSHXSA6dbbzj7tNK-5Ytm5cJ7nscU5YQwQtJAnW0p6RrvnS750plauDXHiG9i8hCTb2IG9ORHuCpqrf7A33oBiLbAi6n0-l8RvxtPv4VfG-t_ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509448446</pqid></control><display><type>article</type><title>Generalized linear mixed hidden semi‐Markov models in longitudinal settings: A Bayesian approach</title><source>Wiley Online Library All Journals</source><creator>Haji‐Maghsoudi, Saiedeh ; Bulla, Jan ; Sadeghifar, Majid ; Roshanaei, Ghodratollah ; Mahjub, Hossein</creator><creatorcontrib>Haji‐Maghsoudi, Saiedeh ; Bulla, Jan ; Sadeghifar, Majid ; Roshanaei, Ghodratollah ; Mahjub, Hossein</creatorcontrib><description>Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count‐type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi‐Markov models (GLM‐HSMMs). These models can account for time‐varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton‐Raphson (MCNR)‐like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM‐HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR‐like algorithm through a simulation study.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8908</identifier><identifier>PMID: 33588516</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bayesian estimation ; generalized linear models ; hidden Markov models ; hidden semi‐Markov models ; Monte Carlo Newton‐Raphson ; Parameter estimation</subject><ispartof>Statistics in medicine, 2021-05, Vol.40 (10), p.2373-2388</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3108-1983915dcb4aa4cf9505714821f87ca86c8a012df6dcebefbf958c848bc86a6e3</cites><orcidid>0000-0002-3547-9125 ; 0000-0002-9375-3807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33588516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haji‐Maghsoudi, Saiedeh</creatorcontrib><creatorcontrib>Bulla, Jan</creatorcontrib><creatorcontrib>Sadeghifar, Majid</creatorcontrib><creatorcontrib>Roshanaei, Ghodratollah</creatorcontrib><creatorcontrib>Mahjub, Hossein</creatorcontrib><title>Generalized linear mixed hidden semi‐Markov models in longitudinal settings: A Bayesian approach</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count‐type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi‐Markov models (GLM‐HSMMs). These models can account for time‐varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton‐Raphson (MCNR)‐like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM‐HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR‐like algorithm through a simulation study.</description><subject>Bayesian estimation</subject><subject>generalized linear models</subject><subject>hidden Markov models</subject><subject>hidden semi‐Markov models</subject><subject>Monte Carlo Newton‐Raphson</subject><subject>Parameter estimation</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDFOwzAUQC0EoqUgcQJkiYUlxU7sxGErFZRKrRiA2XJsp3VJnGKnQJk4AmfkJLgU2Ji-vvT0_tcD4BijPkYoPvem7rMcsR3QxSjPIhRTtgu6KM6yKM0w7YAD7xcIYUzjbB90koQyRnHaBcVIW-1EZd60gpWxWjhYm9ewzI1S2kKva_P5_jEV7rF5hnWjdOWhsbBq7My0K2WsqALUtsbO_AUcwEux1t4IC8Vy6Roh54dgrxSV10c_swcerq_uhzfR5HY0Hg4mkUwwYhHOWZJjqmRBhCCyzCmiGSYsxiXLpGCpZALhWJWpkrrQZREIJhlhhWSpSHXSA6dbbzj7tNK-5Ytm5cJ7nscU5YQwQtJAnW0p6RrvnS750plauDXHiG9i8hCTb2IG9ORHuCpqrf7A33oBiLbAi6n0-l8RvxtPv4VfG-t_ug</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Haji‐Maghsoudi, Saiedeh</creator><creator>Bulla, Jan</creator><creator>Sadeghifar, Majid</creator><creator>Roshanaei, Ghodratollah</creator><creator>Mahjub, Hossein</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-3547-9125</orcidid><orcidid>https://orcid.org/0000-0002-9375-3807</orcidid></search><sort><creationdate>20210510</creationdate><title>Generalized linear mixed hidden semi‐Markov models in longitudinal settings: A Bayesian approach</title><author>Haji‐Maghsoudi, Saiedeh ; Bulla, Jan ; Sadeghifar, Majid ; Roshanaei, Ghodratollah ; Mahjub, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3108-1983915dcb4aa4cf9505714821f87ca86c8a012df6dcebefbf958c848bc86a6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian estimation</topic><topic>generalized linear models</topic><topic>hidden Markov models</topic><topic>hidden semi‐Markov models</topic><topic>Monte Carlo Newton‐Raphson</topic><topic>Parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haji‐Maghsoudi, Saiedeh</creatorcontrib><creatorcontrib>Bulla, Jan</creatorcontrib><creatorcontrib>Sadeghifar, Majid</creatorcontrib><creatorcontrib>Roshanaei, Ghodratollah</creatorcontrib><creatorcontrib>Mahjub, Hossein</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haji‐Maghsoudi, Saiedeh</au><au>Bulla, Jan</au><au>Sadeghifar, Majid</au><au>Roshanaei, Ghodratollah</au><au>Mahjub, Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized linear mixed hidden semi‐Markov models in longitudinal settings: A Bayesian approach</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2021-05-10</date><risdate>2021</risdate><volume>40</volume><issue>10</issue><spage>2373</spage><epage>2388</epage><pages>2373-2388</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count‐type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi‐Markov models (GLM‐HSMMs). These models can account for time‐varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton‐Raphson (MCNR)‐like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM‐HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR‐like algorithm through a simulation study.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33588516</pmid><doi>10.1002/sim.8908</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3547-9125</orcidid><orcidid>https://orcid.org/0000-0002-9375-3807</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2021-05, Vol.40 (10), p.2373-2388
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_journals_2509448446
source Wiley Online Library All Journals
subjects Bayesian estimation
generalized linear models
hidden Markov models
hidden semi‐Markov models
Monte Carlo Newton‐Raphson
Parameter estimation
title Generalized linear mixed hidden semi‐Markov models in longitudinal settings: A Bayesian approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20linear%20mixed%20hidden%20semi%E2%80%90Markov%20models%20in%20longitudinal%20settings:%20A%20Bayesian%20approach&rft.jtitle=Statistics%20in%20medicine&rft.au=Haji%E2%80%90Maghsoudi,%20Saiedeh&rft.date=2021-05-10&rft.volume=40&rft.issue=10&rft.spage=2373&rft.epage=2388&rft.pages=2373-2388&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8908&rft_dat=%3Cproquest_cross%3E2509448446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509448446&rft_id=info:pmid/33588516&rfr_iscdi=true