Cascade R-CNN: High Quality Object Detection and Instance Segmentation
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality . While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2021-05, Vol.43 (5), p.1483-1498 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1498 |
---|---|
container_issue | 5 |
container_start_page | 1483 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 43 |
creator | Cai, Zhaowei Vasconcelos, Nuno |
description | In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality . While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. |
doi_str_mv | 10.1109/TPAMI.2019.2956516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2509290316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8917599</ieee_id><sourcerecordid>2321671312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-965feae064a36c87d506c5b8918ccade36e364b05b536133aace51657ddebc6b3</originalsourceid><addsrcrecordid>eNqNkG9rFDEQh4NY7Fn9Agqy4Buh7DmTuWSTviurbQ9q65_6OmSzc3WPu9262UX67c11zwq-EgZmIM9vmDxCvEKYI4J9f_P59NNyLgHtXFqlFeonYoaWbE6K7FMxA9QyN0aaQ_E8xjUALhTQM3FIWNgFGTMTZ6WPwdecfc3Lq6uT7KK5_ZF9Gf2mGe6z62rNYcg-8JBa07WZb-ts2cbBt4Gzb3y75Xbwu5cX4mDlN5Ff7vuR-H728aa8yC-vz5fl6WUeFMKQW61W7Bn0wpMOpqgV6KAqY9GE3RWkUy0qUJUijUTeB07fUkVdcxV0RUfi3bT3ru9-jhwHt21i4M3Gt9yN0UmSqAsklAl9-w-67sa-Tdc5qcBKC4Q6UXKiQt_F2PPK3fXN1vf3DsHtLLsHy25n2e0tp9Cb_eqx2nL9GPmjNQFmAn5x1a1iaDgJe8QAQFOhiEyaQJbN5LDsxnZI0eP_jyb69UQ3zH-p5LNQ1tJvkbiflA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509290316</pqid></control><display><type>article</type><title>Cascade R-CNN: High Quality Object Detection and Instance Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Cai, Zhaowei ; Vasconcelos, Nuno</creator><creatorcontrib>Cai, Zhaowei ; Vasconcelos, Nuno</creatorcontrib><description>In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality . While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2019.2956516</identifier><identifier>PMID: 31794388</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>LOS ALAMITOS: IEEE</publisher><subject>Bells ; bounding box regression ; cascade ; Computer architecture ; Computer Science ; Computer Science, Artificial Intelligence ; Datasets ; Detectors ; Engineering ; Engineering, Electrical & Electronic ; Feature extraction ; high quality ; Hypotheses ; Inference ; Instance segmentation ; Object detection ; Object recognition ; Performance degradation ; Proposals ; Resampling ; Science & Technology ; Sensors ; Task analysis ; Technology ; Thresholds ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2021-05, Vol.43 (5), p.1483-1498</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>849</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000637533800002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c510t-965feae064a36c87d506c5b8918ccade36e364b05b536133aace51657ddebc6b3</citedby><cites>FETCH-LOGICAL-c510t-965feae064a36c87d506c5b8918ccade36e364b05b536133aace51657ddebc6b3</cites><orcidid>0000-0003-2023-7761 ; 0000-0002-9024-4302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8917599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8917599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31794388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Zhaowei</creatorcontrib><creatorcontrib>Vasconcelos, Nuno</creatorcontrib><title>Cascade R-CNN: High Quality Object Detection and Instance Segmentation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE T PATTERN ANAL</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality . While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN.</description><subject>Bells</subject><subject>bounding box regression</subject><subject>cascade</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Feature extraction</subject><subject>high quality</subject><subject>Hypotheses</subject><subject>Inference</subject><subject>Instance segmentation</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Performance degradation</subject><subject>Proposals</subject><subject>Resampling</subject><subject>Science & Technology</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>Technology</subject><subject>Thresholds</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkG9rFDEQh4NY7Fn9Agqy4Buh7DmTuWSTviurbQ9q65_6OmSzc3WPu9262UX67c11zwq-EgZmIM9vmDxCvEKYI4J9f_P59NNyLgHtXFqlFeonYoaWbE6K7FMxA9QyN0aaQ_E8xjUALhTQM3FIWNgFGTMTZ6WPwdecfc3Lq6uT7KK5_ZF9Gf2mGe6z62rNYcg-8JBa07WZb-ts2cbBt4Gzb3y75Xbwu5cX4mDlN5Ff7vuR-H728aa8yC-vz5fl6WUeFMKQW61W7Bn0wpMOpqgV6KAqY9GE3RWkUy0qUJUijUTeB07fUkVdcxV0RUfi3bT3ru9-jhwHt21i4M3Gt9yN0UmSqAsklAl9-w-67sa-Tdc5qcBKC4Q6UXKiQt_F2PPK3fXN1vf3DsHtLLsHy25n2e0tp9Cb_eqx2nL9GPmjNQFmAn5x1a1iaDgJe8QAQFOhiEyaQJbN5LDsxnZI0eP_jyb69UQ3zH-p5LNQ1tJvkbiflA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Cai, Zhaowei</creator><creator>Vasconcelos, Nuno</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2023-7761</orcidid><orcidid>https://orcid.org/0000-0002-9024-4302</orcidid></search><sort><creationdate>20210501</creationdate><title>Cascade R-CNN: High Quality Object Detection and Instance Segmentation</title><author>Cai, Zhaowei ; Vasconcelos, Nuno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-965feae064a36c87d506c5b8918ccade36e364b05b536133aace51657ddebc6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bells</topic><topic>bounding box regression</topic><topic>cascade</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Feature extraction</topic><topic>high quality</topic><topic>Hypotheses</topic><topic>Inference</topic><topic>Instance segmentation</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Performance degradation</topic><topic>Proposals</topic><topic>Resampling</topic><topic>Science & Technology</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>Technology</topic><topic>Thresholds</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhaowei</creatorcontrib><creatorcontrib>Vasconcelos, Nuno</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Zhaowei</au><au>Vasconcelos, Nuno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascade R-CNN: High Quality Object Detection and Instance Segmentation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><stitle>IEEE T PATTERN ANAL</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>43</volume><issue>5</issue><spage>1483</spage><epage>1498</epage><pages>1483-1498</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality . While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN.</abstract><cop>LOS ALAMITOS</cop><pub>IEEE</pub><pmid>31794388</pmid><doi>10.1109/TPAMI.2019.2956516</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2023-7761</orcidid><orcidid>https://orcid.org/0000-0002-9024-4302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2021-05, Vol.43 (5), p.1483-1498 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2509290316 |
source | IEEE Electronic Library (IEL) |
subjects | Bells bounding box regression cascade Computer architecture Computer Science Computer Science, Artificial Intelligence Datasets Detectors Engineering Engineering, Electrical & Electronic Feature extraction high quality Hypotheses Inference Instance segmentation Object detection Object recognition Performance degradation Proposals Resampling Science & Technology Sensors Task analysis Technology Thresholds Training |
title | Cascade R-CNN: High Quality Object Detection and Instance Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascade%20R-CNN:%20High%20Quality%20Object%20Detection%20and%20Instance%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Cai,%20Zhaowei&rft.date=2021-05-01&rft.volume=43&rft.issue=5&rft.spage=1483&rft.epage=1498&rft.pages=1483-1498&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2019.2956516&rft_dat=%3Cproquest_RIE%3E2321671312%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509290316&rft_id=info:pmid/31794388&rft_ieee_id=8917599&rfr_iscdi=true |