An optimized compact reconstruction weighted essentially non‐oscillatory scheme for advection problems

This paper presents an optimized compact reconstruction weighted essentially non‐oscillatory scheme without dissipation errors (OCRWENO‐LD) for solving advection problems. The construction procedure of this optimized scheme without dissipation errors is as follows: (1) We first design a high‐order c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2021-05, Vol.37 (3), p.2317-2356
Hauptverfasser: Liu, Bijin, Yu, Ching‐Hao, An, Ruidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2356
container_issue 3
container_start_page 2317
container_title Numerical methods for partial differential equations
container_volume 37
creator Liu, Bijin
Yu, Ching‐Hao
An, Ruidong
description This paper presents an optimized compact reconstruction weighted essentially non‐oscillatory scheme without dissipation errors (OCRWENO‐LD) for solving advection problems. The construction procedure of this optimized scheme without dissipation errors is as follows: (1) We first design a high‐order compact difference scheme with four general weights connecting four low‐order compact stencils. The four general weights are determined by applying the Taylor series expansions. (2) These general weights are optimized to the new weights which are derived from the WENO concept and modified wavenumber approach. (3) No dissipation errors are found for the developed OCRWENO‐LD scheme through Fourier analysis. The proposed high‐resolution scheme demonstrates its capability in exhibiting high‐accuracy in smooth regions and avoiding numerical oscillation near discontinuities when simulating the wave equation, Burgers' equation, one‐dimensional Euler equation, porous medium equation, and convection–diffusion Buckley–Leverett equation.
doi_str_mv 10.1002/num.22716
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509281661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509281661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2576-c2c2f8111b013d62f88e986d7138bcf3f30f74d4c4ae6d89bd8521fd41d27f083</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8ssWLR1uO8nGVV8ZIKbKjEzkr8oK6SONgOVVjxCXwjX0IgbNnMjHTPnStdhM6BzIEQumi6ek5pBukBmgDJ2YzGND1EE5LF-QyS_PkYnXi_IwQggXyCtssG2zaY2rwriYWt20IE7JSwjQ-uE8HYBu-VedmGQVfeqyaYoqp63Njm6-PTemGqqgjW9diLraoV1tbhQr6p0ds6W1aq9qfoSBeVV2d_e4o211dPq9vZ-vHmbrVczwRNsnSYgmoGACWBSKbDzVTOUplBxEqhIx0RncUyFnGhUsnyUrKEgpYxSJppwqIpuhj_DsGvnfKB72znmiGS04TklEGawkBdjpRw1nunNG-dqQvXcyD8p0g-FMl_ixzYxcjuTaX6_0H-sLkfHd8OyHhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509281661</pqid></control><display><type>article</type><title>An optimized compact reconstruction weighted essentially non‐oscillatory scheme for advection problems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Bijin ; Yu, Ching‐Hao ; An, Ruidong</creator><creatorcontrib>Liu, Bijin ; Yu, Ching‐Hao ; An, Ruidong</creatorcontrib><description>This paper presents an optimized compact reconstruction weighted essentially non‐oscillatory scheme without dissipation errors (OCRWENO‐LD) for solving advection problems. The construction procedure of this optimized scheme without dissipation errors is as follows: (1) We first design a high‐order compact difference scheme with four general weights connecting four low‐order compact stencils. The four general weights are determined by applying the Taylor series expansions. (2) These general weights are optimized to the new weights which are derived from the WENO concept and modified wavenumber approach. (3) No dissipation errors are found for the developed OCRWENO‐LD scheme through Fourier analysis. The proposed high‐resolution scheme demonstrates its capability in exhibiting high‐accuracy in smooth regions and avoiding numerical oscillation near discontinuities when simulating the wave equation, Burgers' equation, one‐dimensional Euler equation, porous medium equation, and convection–diffusion Buckley–Leverett equation.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22716</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Advection ; Burgers equation ; compact stencils ; dissipation errors ; Essentially non-oscillatory schemes ; Euler-Lagrange equation ; Fourier analysis ; high‐resolution ; non‐oscillation ; Porous media ; Reconstruction ; Series expansion ; Taylor series ; Wave equations ; Wavelengths</subject><ispartof>Numerical methods for partial differential equations, 2021-05, Vol.37 (3), p.2317-2356</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2576-c2c2f8111b013d62f88e986d7138bcf3f30f74d4c4ae6d89bd8521fd41d27f083</cites><orcidid>0000-0002-9895-2418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22716$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22716$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Liu, Bijin</creatorcontrib><creatorcontrib>Yu, Ching‐Hao</creatorcontrib><creatorcontrib>An, Ruidong</creatorcontrib><title>An optimized compact reconstruction weighted essentially non‐oscillatory scheme for advection problems</title><title>Numerical methods for partial differential equations</title><description>This paper presents an optimized compact reconstruction weighted essentially non‐oscillatory scheme without dissipation errors (OCRWENO‐LD) for solving advection problems. The construction procedure of this optimized scheme without dissipation errors is as follows: (1) We first design a high‐order compact difference scheme with four general weights connecting four low‐order compact stencils. The four general weights are determined by applying the Taylor series expansions. (2) These general weights are optimized to the new weights which are derived from the WENO concept and modified wavenumber approach. (3) No dissipation errors are found for the developed OCRWENO‐LD scheme through Fourier analysis. The proposed high‐resolution scheme demonstrates its capability in exhibiting high‐accuracy in smooth regions and avoiding numerical oscillation near discontinuities when simulating the wave equation, Burgers' equation, one‐dimensional Euler equation, porous medium equation, and convection–diffusion Buckley–Leverett equation.</description><subject>Advection</subject><subject>Burgers equation</subject><subject>compact stencils</subject><subject>dissipation errors</subject><subject>Essentially non-oscillatory schemes</subject><subject>Euler-Lagrange equation</subject><subject>Fourier analysis</subject><subject>high‐resolution</subject><subject>non‐oscillation</subject><subject>Porous media</subject><subject>Reconstruction</subject><subject>Series expansion</subject><subject>Taylor series</subject><subject>Wave equations</subject><subject>Wavelengths</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8ssWLR1uO8nGVV8ZIKbKjEzkr8oK6SONgOVVjxCXwjX0IgbNnMjHTPnStdhM6BzIEQumi6ek5pBukBmgDJ2YzGND1EE5LF-QyS_PkYnXi_IwQggXyCtssG2zaY2rwriYWt20IE7JSwjQ-uE8HYBu-VedmGQVfeqyaYoqp63Njm6-PTemGqqgjW9diLraoV1tbhQr6p0ds6W1aq9qfoSBeVV2d_e4o211dPq9vZ-vHmbrVczwRNsnSYgmoGACWBSKbDzVTOUplBxEqhIx0RncUyFnGhUsnyUrKEgpYxSJppwqIpuhj_DsGvnfKB72znmiGS04TklEGawkBdjpRw1nunNG-dqQvXcyD8p0g-FMl_ixzYxcjuTaX6_0H-sLkfHd8OyHhY</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Liu, Bijin</creator><creator>Yu, Ching‐Hao</creator><creator>An, Ruidong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9895-2418</orcidid></search><sort><creationdate>202105</creationdate><title>An optimized compact reconstruction weighted essentially non‐oscillatory scheme for advection problems</title><author>Liu, Bijin ; Yu, Ching‐Hao ; An, Ruidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2576-c2c2f8111b013d62f88e986d7138bcf3f30f74d4c4ae6d89bd8521fd41d27f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advection</topic><topic>Burgers equation</topic><topic>compact stencils</topic><topic>dissipation errors</topic><topic>Essentially non-oscillatory schemes</topic><topic>Euler-Lagrange equation</topic><topic>Fourier analysis</topic><topic>high‐resolution</topic><topic>non‐oscillation</topic><topic>Porous media</topic><topic>Reconstruction</topic><topic>Series expansion</topic><topic>Taylor series</topic><topic>Wave equations</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bijin</creatorcontrib><creatorcontrib>Yu, Ching‐Hao</creatorcontrib><creatorcontrib>An, Ruidong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bijin</au><au>Yu, Ching‐Hao</au><au>An, Ruidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimized compact reconstruction weighted essentially non‐oscillatory scheme for advection problems</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2021-05</date><risdate>2021</risdate><volume>37</volume><issue>3</issue><spage>2317</spage><epage>2356</epage><pages>2317-2356</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>This paper presents an optimized compact reconstruction weighted essentially non‐oscillatory scheme without dissipation errors (OCRWENO‐LD) for solving advection problems. The construction procedure of this optimized scheme without dissipation errors is as follows: (1) We first design a high‐order compact difference scheme with four general weights connecting four low‐order compact stencils. The four general weights are determined by applying the Taylor series expansions. (2) These general weights are optimized to the new weights which are derived from the WENO concept and modified wavenumber approach. (3) No dissipation errors are found for the developed OCRWENO‐LD scheme through Fourier analysis. The proposed high‐resolution scheme demonstrates its capability in exhibiting high‐accuracy in smooth regions and avoiding numerical oscillation near discontinuities when simulating the wave equation, Burgers' equation, one‐dimensional Euler equation, porous medium equation, and convection–diffusion Buckley–Leverett equation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22716</doi><tpages>79</tpages><orcidid>https://orcid.org/0000-0002-9895-2418</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2021-05, Vol.37 (3), p.2317-2356
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2509281661
source Wiley Online Library Journals Frontfile Complete
subjects Advection
Burgers equation
compact stencils
dissipation errors
Essentially non-oscillatory schemes
Euler-Lagrange equation
Fourier analysis
high‐resolution
non‐oscillation
Porous media
Reconstruction
Series expansion
Taylor series
Wave equations
Wavelengths
title An optimized compact reconstruction weighted essentially non‐oscillatory scheme for advection problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimized%20compact%20reconstruction%20weighted%20essentially%20non%E2%80%90oscillatory%20scheme%20for%20advection%20problems&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Liu,%20Bijin&rft.date=2021-05&rft.volume=37&rft.issue=3&rft.spage=2317&rft.epage=2356&rft.pages=2317-2356&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22716&rft_dat=%3Cproquest_cross%3E2509281661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509281661&rft_id=info:pmid/&rfr_iscdi=true