Quantifying Shallow Overland Flow Patterns Under Laboratory Simulations Using Thermal and LiDAR Imagery

Desertification processes pose a global environmental threat, impacting 61 × 106 km2 of the terrestrial land area. Changes in overland flow patterns and consequent rainwater redistribution in drylands present a potential pathway to desertification, because vegetation often relies on water inputs fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2021-03, Vol.57 (3), p.n/a
Hauptverfasser: Danino, Din, Svoray, Tal, Thompson, Sally, Cohen, Ariel, Crompton, Octavia, Volk, Elazar, Argaman, Eli, Levi, Asher, Cohen, Yafit, Narkis, Kfir, Assouline, Shmuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Water resources research
container_volume 57
creator Danino, Din
Svoray, Tal
Thompson, Sally
Cohen, Ariel
Crompton, Octavia
Volk, Elazar
Argaman, Eli
Levi, Asher
Cohen, Yafit
Narkis, Kfir
Assouline, Shmuel
description Desertification processes pose a global environmental threat, impacting 61 × 106 km2 of the terrestrial land area. Changes in overland flow patterns and consequent rainwater redistribution in drylands present a potential pathway to desertification, because vegetation often relies on water inputs from runoff to sustain growth under insufficient rainfall conditions. Of particular importance are the very shallow overland flows that redistribute water, nutrients, and biological matter within arid landscapes. However, characterizing overland flow patterns remains challenging, due to their very shallow depths, their distributed nature, and the poor understanding of how these flows interact with the underlying rough soil surface. This paper describes how coupling thermal images of shallow overland flows with light detection and ranging (LiDAR) scanning of the underlying soil surface in 1 m2 experimental trays allows spatial patterns of shallow overland flow to be quantified. Laboratory experiments were used to explore the behaviors of shallow overland flow as mean slope gradients and soil roughness were varied. The results show that these imaging techniques are able to capture differences in flow patterns arising across soil surfaces with varying slope, roughness, and spatial variation in infiltration properties. Several spatial indices characterizing overland flow patterns were found to correlate with runoff volume. The presence of high permeability soil patches substantially regulated overland flow. A next logical step would be to apply the thermal and LiDAR measurement techniques to the hillslope scale. Key Points Light detection and ranging scanning of the soil surface and thermal tracers allow quantification of spatial patterns of shallow overland flow Imaging techniques capture differences in flow properties arising across soil surface roughness and infiltration properties Indices of overland flow are linked with runoff volume and sinks along the slope regulate overland flow
doi_str_mv 10.1029/2020WR028857
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509261801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509261801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3733-479b99c3f2f0066f51b90232a8426283ee6f7c7fe399132a13196c3b94d6f31b3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4wEicSVgex07PlaFQqVIhbRVj5GT2m2q_BQ7ocrbk6gcOHFa7e43M9IgdE_wE8FUPlNM8SbGNAwDcYFGRDLmCyngEo0wZuATkOIa3Th3wJiwgIsR2n22qmpy0-XVzlvuVVHUJ2_xrW2hqq03G7YP1TTaVs5bV1ttvUiltVVNbTtvmZdtoZq8Hp5ucFjttS1V4Q3iKH-ZxN68VDttu1t0ZVTh9N3vHKP17HU1ffejxdt8Ool8BQLAZ0KmUmZgqMGYcxOQVGIKVIWMchqC1tyITBgNUpL-TIBInkEq2ZYbICmM0cPZ92jrr1a7JjnUra36yIQGWFJOQkx66vFMZbZ2zmqTHG1eKtslBCdDlcnfKnsczvgpL3T3L5ts4mlMA8IAfgDb6HR7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509261801</pqid></control><display><type>article</type><title>Quantifying Shallow Overland Flow Patterns Under Laboratory Simulations Using Thermal and LiDAR Imagery</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Danino, Din ; Svoray, Tal ; Thompson, Sally ; Cohen, Ariel ; Crompton, Octavia ; Volk, Elazar ; Argaman, Eli ; Levi, Asher ; Cohen, Yafit ; Narkis, Kfir ; Assouline, Shmuel</creator><creatorcontrib>Danino, Din ; Svoray, Tal ; Thompson, Sally ; Cohen, Ariel ; Crompton, Octavia ; Volk, Elazar ; Argaman, Eli ; Levi, Asher ; Cohen, Yafit ; Narkis, Kfir ; Assouline, Shmuel</creatorcontrib><description>Desertification processes pose a global environmental threat, impacting 61 × 106 km2 of the terrestrial land area. Changes in overland flow patterns and consequent rainwater redistribution in drylands present a potential pathway to desertification, because vegetation often relies on water inputs from runoff to sustain growth under insufficient rainfall conditions. Of particular importance are the very shallow overland flows that redistribute water, nutrients, and biological matter within arid landscapes. However, characterizing overland flow patterns remains challenging, due to their very shallow depths, their distributed nature, and the poor understanding of how these flows interact with the underlying rough soil surface. This paper describes how coupling thermal images of shallow overland flows with light detection and ranging (LiDAR) scanning of the underlying soil surface in 1 m2 experimental trays allows spatial patterns of shallow overland flow to be quantified. Laboratory experiments were used to explore the behaviors of shallow overland flow as mean slope gradients and soil roughness were varied. The results show that these imaging techniques are able to capture differences in flow patterns arising across soil surfaces with varying slope, roughness, and spatial variation in infiltration properties. Several spatial indices characterizing overland flow patterns were found to correlate with runoff volume. The presence of high permeability soil patches substantially regulated overland flow. A next logical step would be to apply the thermal and LiDAR measurement techniques to the hillslope scale. Key Points Light detection and ranging scanning of the soil surface and thermal tracers allow quantification of spatial patterns of shallow overland flow Imaging techniques capture differences in flow properties arising across soil surface roughness and infiltration properties Indices of overland flow are linked with runoff volume and sinks along the slope regulate overland flow</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2020WR028857</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Arid environments ; Arid lands ; Arid zones ; Aridity ; Desertification ; Environmental impact ; Flow distribution ; Flow pattern ; Imagery ; Imaging techniques ; Laboratories ; Laboratory experiments ; Lidar ; Lidar measurements ; Measurement techniques ; Nutrients ; Overland flow ; Permeability ; Rain ; Rain water ; Rainfall ; Roughness ; Runoff ; Runoff volume ; Slope gradients ; Slopes ; Soil ; Soil permeability ; Soil surfaces ; Soils ; Spatial variations ; Surface runoff ; Thermal simulation ; Trays</subject><ispartof>Water resources research, 2021-03, Vol.57 (3), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3733-479b99c3f2f0066f51b90232a8426283ee6f7c7fe399132a13196c3b94d6f31b3</citedby><cites>FETCH-LOGICAL-a3733-479b99c3f2f0066f51b90232a8426283ee6f7c7fe399132a13196c3b94d6f31b3</cites><orcidid>0000-0002-3805-3971 ; 0000-0003-2243-8532 ; 0000-0002-3576-6159 ; 0000-0003-4618-5066 ; 0000-0001-5095-4353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020WR028857$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020WR028857$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Danino, Din</creatorcontrib><creatorcontrib>Svoray, Tal</creatorcontrib><creatorcontrib>Thompson, Sally</creatorcontrib><creatorcontrib>Cohen, Ariel</creatorcontrib><creatorcontrib>Crompton, Octavia</creatorcontrib><creatorcontrib>Volk, Elazar</creatorcontrib><creatorcontrib>Argaman, Eli</creatorcontrib><creatorcontrib>Levi, Asher</creatorcontrib><creatorcontrib>Cohen, Yafit</creatorcontrib><creatorcontrib>Narkis, Kfir</creatorcontrib><creatorcontrib>Assouline, Shmuel</creatorcontrib><title>Quantifying Shallow Overland Flow Patterns Under Laboratory Simulations Using Thermal and LiDAR Imagery</title><title>Water resources research</title><description>Desertification processes pose a global environmental threat, impacting 61 × 106 km2 of the terrestrial land area. Changes in overland flow patterns and consequent rainwater redistribution in drylands present a potential pathway to desertification, because vegetation often relies on water inputs from runoff to sustain growth under insufficient rainfall conditions. Of particular importance are the very shallow overland flows that redistribute water, nutrients, and biological matter within arid landscapes. However, characterizing overland flow patterns remains challenging, due to their very shallow depths, their distributed nature, and the poor understanding of how these flows interact with the underlying rough soil surface. This paper describes how coupling thermal images of shallow overland flows with light detection and ranging (LiDAR) scanning of the underlying soil surface in 1 m2 experimental trays allows spatial patterns of shallow overland flow to be quantified. Laboratory experiments were used to explore the behaviors of shallow overland flow as mean slope gradients and soil roughness were varied. The results show that these imaging techniques are able to capture differences in flow patterns arising across soil surfaces with varying slope, roughness, and spatial variation in infiltration properties. Several spatial indices characterizing overland flow patterns were found to correlate with runoff volume. The presence of high permeability soil patches substantially regulated overland flow. A next logical step would be to apply the thermal and LiDAR measurement techniques to the hillslope scale. Key Points Light detection and ranging scanning of the soil surface and thermal tracers allow quantification of spatial patterns of shallow overland flow Imaging techniques capture differences in flow properties arising across soil surface roughness and infiltration properties Indices of overland flow are linked with runoff volume and sinks along the slope regulate overland flow</description><subject>Arid environments</subject><subject>Arid lands</subject><subject>Arid zones</subject><subject>Aridity</subject><subject>Desertification</subject><subject>Environmental impact</subject><subject>Flow distribution</subject><subject>Flow pattern</subject><subject>Imagery</subject><subject>Imaging techniques</subject><subject>Laboratories</subject><subject>Laboratory experiments</subject><subject>Lidar</subject><subject>Lidar measurements</subject><subject>Measurement techniques</subject><subject>Nutrients</subject><subject>Overland flow</subject><subject>Permeability</subject><subject>Rain</subject><subject>Rain water</subject><subject>Rainfall</subject><subject>Roughness</subject><subject>Runoff</subject><subject>Runoff volume</subject><subject>Slope gradients</subject><subject>Slopes</subject><subject>Soil</subject><subject>Soil permeability</subject><subject>Soil surfaces</subject><subject>Soils</subject><subject>Spatial variations</subject><subject>Surface runoff</subject><subject>Thermal simulation</subject><subject>Trays</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4wEicSVgex07PlaFQqVIhbRVj5GT2m2q_BQ7ocrbk6gcOHFa7e43M9IgdE_wE8FUPlNM8SbGNAwDcYFGRDLmCyngEo0wZuATkOIa3Th3wJiwgIsR2n22qmpy0-XVzlvuVVHUJ2_xrW2hqq03G7YP1TTaVs5bV1ttvUiltVVNbTtvmZdtoZq8Hp5ucFjttS1V4Q3iKH-ZxN68VDttu1t0ZVTh9N3vHKP17HU1ffejxdt8Ool8BQLAZ0KmUmZgqMGYcxOQVGIKVIWMchqC1tyITBgNUpL-TIBInkEq2ZYbICmM0cPZ92jrr1a7JjnUra36yIQGWFJOQkx66vFMZbZ2zmqTHG1eKtslBCdDlcnfKnsczvgpL3T3L5ts4mlMA8IAfgDb6HR7</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Danino, Din</creator><creator>Svoray, Tal</creator><creator>Thompson, Sally</creator><creator>Cohen, Ariel</creator><creator>Crompton, Octavia</creator><creator>Volk, Elazar</creator><creator>Argaman, Eli</creator><creator>Levi, Asher</creator><creator>Cohen, Yafit</creator><creator>Narkis, Kfir</creator><creator>Assouline, Shmuel</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3805-3971</orcidid><orcidid>https://orcid.org/0000-0003-2243-8532</orcidid><orcidid>https://orcid.org/0000-0002-3576-6159</orcidid><orcidid>https://orcid.org/0000-0003-4618-5066</orcidid><orcidid>https://orcid.org/0000-0001-5095-4353</orcidid></search><sort><creationdate>202103</creationdate><title>Quantifying Shallow Overland Flow Patterns Under Laboratory Simulations Using Thermal and LiDAR Imagery</title><author>Danino, Din ; Svoray, Tal ; Thompson, Sally ; Cohen, Ariel ; Crompton, Octavia ; Volk, Elazar ; Argaman, Eli ; Levi, Asher ; Cohen, Yafit ; Narkis, Kfir ; Assouline, Shmuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3733-479b99c3f2f0066f51b90232a8426283ee6f7c7fe399132a13196c3b94d6f31b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arid environments</topic><topic>Arid lands</topic><topic>Arid zones</topic><topic>Aridity</topic><topic>Desertification</topic><topic>Environmental impact</topic><topic>Flow distribution</topic><topic>Flow pattern</topic><topic>Imagery</topic><topic>Imaging techniques</topic><topic>Laboratories</topic><topic>Laboratory experiments</topic><topic>Lidar</topic><topic>Lidar measurements</topic><topic>Measurement techniques</topic><topic>Nutrients</topic><topic>Overland flow</topic><topic>Permeability</topic><topic>Rain</topic><topic>Rain water</topic><topic>Rainfall</topic><topic>Roughness</topic><topic>Runoff</topic><topic>Runoff volume</topic><topic>Slope gradients</topic><topic>Slopes</topic><topic>Soil</topic><topic>Soil permeability</topic><topic>Soil surfaces</topic><topic>Soils</topic><topic>Spatial variations</topic><topic>Surface runoff</topic><topic>Thermal simulation</topic><topic>Trays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danino, Din</creatorcontrib><creatorcontrib>Svoray, Tal</creatorcontrib><creatorcontrib>Thompson, Sally</creatorcontrib><creatorcontrib>Cohen, Ariel</creatorcontrib><creatorcontrib>Crompton, Octavia</creatorcontrib><creatorcontrib>Volk, Elazar</creatorcontrib><creatorcontrib>Argaman, Eli</creatorcontrib><creatorcontrib>Levi, Asher</creatorcontrib><creatorcontrib>Cohen, Yafit</creatorcontrib><creatorcontrib>Narkis, Kfir</creatorcontrib><creatorcontrib>Assouline, Shmuel</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danino, Din</au><au>Svoray, Tal</au><au>Thompson, Sally</au><au>Cohen, Ariel</au><au>Crompton, Octavia</au><au>Volk, Elazar</au><au>Argaman, Eli</au><au>Levi, Asher</au><au>Cohen, Yafit</au><au>Narkis, Kfir</au><au>Assouline, Shmuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Shallow Overland Flow Patterns Under Laboratory Simulations Using Thermal and LiDAR Imagery</atitle><jtitle>Water resources research</jtitle><date>2021-03</date><risdate>2021</risdate><volume>57</volume><issue>3</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Desertification processes pose a global environmental threat, impacting 61 × 106 km2 of the terrestrial land area. Changes in overland flow patterns and consequent rainwater redistribution in drylands present a potential pathway to desertification, because vegetation often relies on water inputs from runoff to sustain growth under insufficient rainfall conditions. Of particular importance are the very shallow overland flows that redistribute water, nutrients, and biological matter within arid landscapes. However, characterizing overland flow patterns remains challenging, due to their very shallow depths, their distributed nature, and the poor understanding of how these flows interact with the underlying rough soil surface. This paper describes how coupling thermal images of shallow overland flows with light detection and ranging (LiDAR) scanning of the underlying soil surface in 1 m2 experimental trays allows spatial patterns of shallow overland flow to be quantified. Laboratory experiments were used to explore the behaviors of shallow overland flow as mean slope gradients and soil roughness were varied. The results show that these imaging techniques are able to capture differences in flow patterns arising across soil surfaces with varying slope, roughness, and spatial variation in infiltration properties. Several spatial indices characterizing overland flow patterns were found to correlate with runoff volume. The presence of high permeability soil patches substantially regulated overland flow. A next logical step would be to apply the thermal and LiDAR measurement techniques to the hillslope scale. Key Points Light detection and ranging scanning of the soil surface and thermal tracers allow quantification of spatial patterns of shallow overland flow Imaging techniques capture differences in flow properties arising across soil surface roughness and infiltration properties Indices of overland flow are linked with runoff volume and sinks along the slope regulate overland flow</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020WR028857</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3805-3971</orcidid><orcidid>https://orcid.org/0000-0003-2243-8532</orcidid><orcidid>https://orcid.org/0000-0002-3576-6159</orcidid><orcidid>https://orcid.org/0000-0003-4618-5066</orcidid><orcidid>https://orcid.org/0000-0001-5095-4353</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2021-03, Vol.57 (3), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2509261801
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arid environments
Arid lands
Arid zones
Aridity
Desertification
Environmental impact
Flow distribution
Flow pattern
Imagery
Imaging techniques
Laboratories
Laboratory experiments
Lidar
Lidar measurements
Measurement techniques
Nutrients
Overland flow
Permeability
Rain
Rain water
Rainfall
Roughness
Runoff
Runoff volume
Slope gradients
Slopes
Soil
Soil permeability
Soil surfaces
Soils
Spatial variations
Surface runoff
Thermal simulation
Trays
title Quantifying Shallow Overland Flow Patterns Under Laboratory Simulations Using Thermal and LiDAR Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Shallow%20Overland%20Flow%20Patterns%20Under%20Laboratory%20Simulations%20Using%20Thermal%20and%20LiDAR%20Imagery&rft.jtitle=Water%20resources%20research&rft.au=Danino,%20Din&rft.date=2021-03&rft.volume=57&rft.issue=3&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2020WR028857&rft_dat=%3Cproquest_cross%3E2509261801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509261801&rft_id=info:pmid/&rfr_iscdi=true