Harvesting Air and Light Energy via “All‐in‐One” Polymer Cathodes for High‐Capacity, Self‐Chargeable, and Multimode‐Switching Zinc Batteries

Aqueous rechargeable Zinc (Zn)–polymer batteries are promising alternatives to prevalent Li‐ion cells in terms of cost, safety, and rate capability but they suffer from limited specific capacity in addition to poor environmental adaptability. Herein, air and light are successfully utilized from exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-03, Vol.31 (13), p.n/a
Hauptverfasser: Xie, Xiuli, Fang, Zhengsong, Yang, Meijia, Zhu, Fangming, Yu, Dingshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title Advanced functional materials
container_volume 31
creator Xie, Xiuli
Fang, Zhengsong
Yang, Meijia
Zhu, Fangming
Yu, Dingshan
description Aqueous rechargeable Zinc (Zn)–polymer batteries are promising alternatives to prevalent Li‐ion cells in terms of cost, safety, and rate capability but they suffer from limited specific capacity in addition to poor environmental adaptability. Herein, air and light are successfully utilized from external environments in single near‐neutral two‐electrode Zn batteries to enable remarkably improved electrochemical performance, fast self‐charging, and switchable multimode‐operation from Zn–polymer to Zn–air cells. This system is enabled by a well‐designed polyaniline‐nanorod‐array based “all‐in‐one” cathode combining reversible redox capability, oxygen reduction activity, and photothermal‐responsiveness. The initiative design allows perfect integration of multiple energy harvesting from ambient “air” and light, energy conversion, and storage in one single cathode. Thus, it can act as an efficient light‐assisted electrically‐rechargeable Zn–polymer cell featuring the highest specific capacity of 430.0 mAh g−1 among all existing polymer cathodes. Without external power sources, it can be self‐charged to deliver a high discharging capacity of 363.1 mAh g−1 by concurrently harvesting chemical energy from air and light energy for only 20 min. It can also switch to a light‐responsive Zn–air battery mode to surmount the output capacity limit of Zn–polymer battery mode for continued electricity supply. A unique “air” and light energy harvesting zinc (Zn)–PANINA multi‐mode battery is enabled using an “all‐in‐one” tri‐layered cathode module comprising a polyaniline‐nanorod‐array‐enabled bifunctional active layer, a waterproof breathable layer and an air‐barrier layer. This system can work as an efficient light‐assisted electrically rechargeable Zn–PANINA battery, air and light dual‐assisted self‐charging Zn–PANINA battery and light‐responsive primary Zn–air battery.
doi_str_mv 10.1002/adfm.202007942
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509258419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509258419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3562-85d5ab5fadfe2dd46cc03a647d47ed3c12f1082ed900620b7ca865d109f31bd63</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhiMEEqWwMltipeXYuY-htBSpVZEKEmKJHNtJXOVSnLRVtj4CM4KX65PgUFRGFh_rnP87l98wLjH0MQC5oTzO-wQIgOtb5MjoYAc7PROId3z445dT46yqFgDYdU2rY3yMqVqLqpZFggKpEC04msgkrdGwECpp0FpStNt-Blm2277LQj-zQuy2X-ixzJpcKDSgdVpyUaG4VGisUS0Z0CVlsm6u0VxkcZtIqUoEjTJx_TNiuspqmWtM1-YbWbO0XeBVFgzd0roWSorq3DiJaVaJi9_YNZ5Hw6fBuDeZ3T8MgkmPmbZDep7NbRrZsT5fEM4thzEwqWO53HIFNxkmMQaPCO4DOAQil1HPsTkGPzZxxB2za1zt-y5V-bbSXoSLcqUKPTIkNvjE9izsa1V_r2KqrCol4nCpZE5VE2IIW__D1v_w4L8G_D2wkZlo_lGHwd1o-sd-A7T8kfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509258419</pqid></control><display><type>article</type><title>Harvesting Air and Light Energy via “All‐in‐One” Polymer Cathodes for High‐Capacity, Self‐Chargeable, and Multimode‐Switching Zinc Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xie, Xiuli ; Fang, Zhengsong ; Yang, Meijia ; Zhu, Fangming ; Yu, Dingshan</creator><creatorcontrib>Xie, Xiuli ; Fang, Zhengsong ; Yang, Meijia ; Zhu, Fangming ; Yu, Dingshan</creatorcontrib><description>Aqueous rechargeable Zinc (Zn)–polymer batteries are promising alternatives to prevalent Li‐ion cells in terms of cost, safety, and rate capability but they suffer from limited specific capacity in addition to poor environmental adaptability. Herein, air and light are successfully utilized from external environments in single near‐neutral two‐electrode Zn batteries to enable remarkably improved electrochemical performance, fast self‐charging, and switchable multimode‐operation from Zn–polymer to Zn–air cells. This system is enabled by a well‐designed polyaniline‐nanorod‐array based “all‐in‐one” cathode combining reversible redox capability, oxygen reduction activity, and photothermal‐responsiveness. The initiative design allows perfect integration of multiple energy harvesting from ambient “air” and light, energy conversion, and storage in one single cathode. Thus, it can act as an efficient light‐assisted electrically‐rechargeable Zn–polymer cell featuring the highest specific capacity of 430.0 mAh g−1 among all existing polymer cathodes. Without external power sources, it can be self‐charged to deliver a high discharging capacity of 363.1 mAh g−1 by concurrently harvesting chemical energy from air and light energy for only 20 min. It can also switch to a light‐responsive Zn–air battery mode to surmount the output capacity limit of Zn–polymer battery mode for continued electricity supply. A unique “air” and light energy harvesting zinc (Zn)–PANINA multi‐mode battery is enabled using an “all‐in‐one” tri‐layered cathode module comprising a polyaniline‐nanorod‐array‐enabled bifunctional active layer, a waterproof breathable layer and an air‐barrier layer. This system can work as an efficient light‐assisted electrically rechargeable Zn–PANINA battery, air and light dual‐assisted self‐charging Zn–PANINA battery and light‐responsive primary Zn–air battery.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202007942</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Charging ; Chemical energy ; conductive polymer cathodes ; Electrochemical analysis ; Energy conversion ; Energy harvesting ; Energy storage ; Light ; Materials science ; Metal air batteries ; Nanorods ; photoresponsive batteries ; Photothermal conversion ; photothermal effect ; Polyanilines ; Polymers ; Power sources ; Rechargeable batteries ; self‐chargeable batteries ; Zinc-oxygen batteries ; Zn–air batteries</subject><ispartof>Advanced functional materials, 2021-03, Vol.31 (13), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3562-85d5ab5fadfe2dd46cc03a647d47ed3c12f1082ed900620b7ca865d109f31bd63</citedby><cites>FETCH-LOGICAL-c3562-85d5ab5fadfe2dd46cc03a647d47ed3c12f1082ed900620b7ca865d109f31bd63</cites><orcidid>0000-0002-2913-2432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202007942$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202007942$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Xie, Xiuli</creatorcontrib><creatorcontrib>Fang, Zhengsong</creatorcontrib><creatorcontrib>Yang, Meijia</creatorcontrib><creatorcontrib>Zhu, Fangming</creatorcontrib><creatorcontrib>Yu, Dingshan</creatorcontrib><title>Harvesting Air and Light Energy via “All‐in‐One” Polymer Cathodes for High‐Capacity, Self‐Chargeable, and Multimode‐Switching Zinc Batteries</title><title>Advanced functional materials</title><description>Aqueous rechargeable Zinc (Zn)–polymer batteries are promising alternatives to prevalent Li‐ion cells in terms of cost, safety, and rate capability but they suffer from limited specific capacity in addition to poor environmental adaptability. Herein, air and light are successfully utilized from external environments in single near‐neutral two‐electrode Zn batteries to enable remarkably improved electrochemical performance, fast self‐charging, and switchable multimode‐operation from Zn–polymer to Zn–air cells. This system is enabled by a well‐designed polyaniline‐nanorod‐array based “all‐in‐one” cathode combining reversible redox capability, oxygen reduction activity, and photothermal‐responsiveness. The initiative design allows perfect integration of multiple energy harvesting from ambient “air” and light, energy conversion, and storage in one single cathode. Thus, it can act as an efficient light‐assisted electrically‐rechargeable Zn–polymer cell featuring the highest specific capacity of 430.0 mAh g−1 among all existing polymer cathodes. Without external power sources, it can be self‐charged to deliver a high discharging capacity of 363.1 mAh g−1 by concurrently harvesting chemical energy from air and light energy for only 20 min. It can also switch to a light‐responsive Zn–air battery mode to surmount the output capacity limit of Zn–polymer battery mode for continued electricity supply. A unique “air” and light energy harvesting zinc (Zn)–PANINA multi‐mode battery is enabled using an “all‐in‐one” tri‐layered cathode module comprising a polyaniline‐nanorod‐array‐enabled bifunctional active layer, a waterproof breathable layer and an air‐barrier layer. This system can work as an efficient light‐assisted electrically rechargeable Zn–PANINA battery, air and light dual‐assisted self‐charging Zn–PANINA battery and light‐responsive primary Zn–air battery.</description><subject>Cathodes</subject><subject>Charging</subject><subject>Chemical energy</subject><subject>conductive polymer cathodes</subject><subject>Electrochemical analysis</subject><subject>Energy conversion</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Light</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Nanorods</subject><subject>photoresponsive batteries</subject><subject>Photothermal conversion</subject><subject>photothermal effect</subject><subject>Polyanilines</subject><subject>Polymers</subject><subject>Power sources</subject><subject>Rechargeable batteries</subject><subject>self‐chargeable batteries</subject><subject>Zinc-oxygen batteries</subject><subject>Zn–air batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhiMEEqWwMltipeXYuY-htBSpVZEKEmKJHNtJXOVSnLRVtj4CM4KX65PgUFRGFh_rnP87l98wLjH0MQC5oTzO-wQIgOtb5MjoYAc7PROId3z445dT46yqFgDYdU2rY3yMqVqLqpZFggKpEC04msgkrdGwECpp0FpStNt-Blm2277LQj-zQuy2X-ixzJpcKDSgdVpyUaG4VGisUS0Z0CVlsm6u0VxkcZtIqUoEjTJx_TNiuspqmWtM1-YbWbO0XeBVFgzd0roWSorq3DiJaVaJi9_YNZ5Hw6fBuDeZ3T8MgkmPmbZDep7NbRrZsT5fEM4thzEwqWO53HIFNxkmMQaPCO4DOAQil1HPsTkGPzZxxB2za1zt-y5V-bbSXoSLcqUKPTIkNvjE9izsa1V_r2KqrCol4nCpZE5VE2IIW__D1v_w4L8G_D2wkZlo_lGHwd1o-sd-A7T8kfA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Xie, Xiuli</creator><creator>Fang, Zhengsong</creator><creator>Yang, Meijia</creator><creator>Zhu, Fangming</creator><creator>Yu, Dingshan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2913-2432</orcidid></search><sort><creationdate>20210301</creationdate><title>Harvesting Air and Light Energy via “All‐in‐One” Polymer Cathodes for High‐Capacity, Self‐Chargeable, and Multimode‐Switching Zinc Batteries</title><author>Xie, Xiuli ; Fang, Zhengsong ; Yang, Meijia ; Zhu, Fangming ; Yu, Dingshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3562-85d5ab5fadfe2dd46cc03a647d47ed3c12f1082ed900620b7ca865d109f31bd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cathodes</topic><topic>Charging</topic><topic>Chemical energy</topic><topic>conductive polymer cathodes</topic><topic>Electrochemical analysis</topic><topic>Energy conversion</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Light</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Nanorods</topic><topic>photoresponsive batteries</topic><topic>Photothermal conversion</topic><topic>photothermal effect</topic><topic>Polyanilines</topic><topic>Polymers</topic><topic>Power sources</topic><topic>Rechargeable batteries</topic><topic>self‐chargeable batteries</topic><topic>Zinc-oxygen batteries</topic><topic>Zn–air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xiuli</creatorcontrib><creatorcontrib>Fang, Zhengsong</creatorcontrib><creatorcontrib>Yang, Meijia</creatorcontrib><creatorcontrib>Zhu, Fangming</creatorcontrib><creatorcontrib>Yu, Dingshan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xiuli</au><au>Fang, Zhengsong</au><au>Yang, Meijia</au><au>Zhu, Fangming</au><au>Yu, Dingshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harvesting Air and Light Energy via “All‐in‐One” Polymer Cathodes for High‐Capacity, Self‐Chargeable, and Multimode‐Switching Zinc Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>31</volume><issue>13</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous rechargeable Zinc (Zn)–polymer batteries are promising alternatives to prevalent Li‐ion cells in terms of cost, safety, and rate capability but they suffer from limited specific capacity in addition to poor environmental adaptability. Herein, air and light are successfully utilized from external environments in single near‐neutral two‐electrode Zn batteries to enable remarkably improved electrochemical performance, fast self‐charging, and switchable multimode‐operation from Zn–polymer to Zn–air cells. This system is enabled by a well‐designed polyaniline‐nanorod‐array based “all‐in‐one” cathode combining reversible redox capability, oxygen reduction activity, and photothermal‐responsiveness. The initiative design allows perfect integration of multiple energy harvesting from ambient “air” and light, energy conversion, and storage in one single cathode. Thus, it can act as an efficient light‐assisted electrically‐rechargeable Zn–polymer cell featuring the highest specific capacity of 430.0 mAh g−1 among all existing polymer cathodes. Without external power sources, it can be self‐charged to deliver a high discharging capacity of 363.1 mAh g−1 by concurrently harvesting chemical energy from air and light energy for only 20 min. It can also switch to a light‐responsive Zn–air battery mode to surmount the output capacity limit of Zn–polymer battery mode for continued electricity supply. A unique “air” and light energy harvesting zinc (Zn)–PANINA multi‐mode battery is enabled using an “all‐in‐one” tri‐layered cathode module comprising a polyaniline‐nanorod‐array‐enabled bifunctional active layer, a waterproof breathable layer and an air‐barrier layer. This system can work as an efficient light‐assisted electrically rechargeable Zn–PANINA battery, air and light dual‐assisted self‐charging Zn–PANINA battery and light‐responsive primary Zn–air battery.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202007942</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2913-2432</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-03, Vol.31 (13), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2509258419
source Wiley Online Library Journals Frontfile Complete
subjects Cathodes
Charging
Chemical energy
conductive polymer cathodes
Electrochemical analysis
Energy conversion
Energy harvesting
Energy storage
Light
Materials science
Metal air batteries
Nanorods
photoresponsive batteries
Photothermal conversion
photothermal effect
Polyanilines
Polymers
Power sources
Rechargeable batteries
self‐chargeable batteries
Zinc-oxygen batteries
Zn–air batteries
title Harvesting Air and Light Energy via “All‐in‐One” Polymer Cathodes for High‐Capacity, Self‐Chargeable, and Multimode‐Switching Zinc Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harvesting%20Air%20and%20Light%20Energy%20via%20%E2%80%9CAll%E2%80%90in%E2%80%90One%E2%80%9D%20Polymer%20Cathodes%20for%20High%E2%80%90Capacity,%20Self%E2%80%90Chargeable,%20and%20Multimode%E2%80%90Switching%20Zinc%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Xie,%20Xiuli&rft.date=2021-03-01&rft.volume=31&rft.issue=13&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202007942&rft_dat=%3Cproquest_cross%3E2509258419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509258419&rft_id=info:pmid/&rfr_iscdi=true