The explicit role of electron exchange in the hydrogen bonded molecular complexes

We applied a set of advanced bonding descriptors to establish the hidden electron density features and binding energy characteristics of intermolecular DH∙∙∙A hydrogen bonds (OH∙∙∙O, NH∙∙∙O and SH∙∙∙O) in 150 isolated and solvated molecular complexes. The exchange‐correlation and Pauli potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2021-05, Vol.42 (12), p.870-882
Hauptverfasser: Levina, Elena O., Khrenova, Maria G., Tsirelson, Vladimir G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We applied a set of advanced bonding descriptors to establish the hidden electron density features and binding energy characteristics of intermolecular DH∙∙∙A hydrogen bonds (OH∙∙∙O, NH∙∙∙O and SH∙∙∙O) in 150 isolated and solvated molecular complexes. The exchange‐correlation and Pauli potentials as well as corresponding local one‐electron forces allowed us to explicitly ascertain how electron exchange defines the bonding picture in the proximity of the H‐bond critical point. The electron density features of DH∙∙∙A interaction are governed by alterations in the electron localization in the H‐bond region displaying itself in the exchange hole. At that, they do not depend on the variations in the exchange hole mobility. The electrostatic interaction mainly defines the energy of H‐bonds of different types, whereas the strengthening/weakening of H‐bonds in complexes with varying substituents depends on the barrier height of the exchange potential near the bond critical point. Energy variations between H‐bonds in isolated and solvated systems are also caused the electron exchange peculiarities as follows from the corresponding potential and the interacting quantum atom analyses complemented by electron delocalization index calculations. Our approach is based on the bonding descriptors associated with the characteristics of the observable electron density and can be recommended for in‐depth studies of non‐covalent bonding. Analysis of one‐electron potentials and corresponding forces, which appear in the Euler equation for electron density, shed light on the implicit features of intermolecular DH∙∙∙A hydrogen bonds. We found that electronic exchange effects play pivotal role in the stabilization of H‐bonded molecular complexes alongside with electrostatic ones and thoroughly examined interplay between them.
ISSN:0192-8651
1096-987X
DOI:10.1002/jcc.26507