Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate
Robinia pseudoacacia is one of the most frequent non‐native species in Europe. It is a fast‐growing tree of high economic and cultural importance. On the other hand, it is an invasive species, causing changes in soil chemistry and light regime, and consequently altering the plant communities. Previo...
Gespeichert in:
Veröffentlicht in: | Global change biology 2021-04, Vol.27 (8), p.1587-1600 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1600 |
---|---|
container_issue | 8 |
container_start_page | 1587 |
container_title | Global change biology |
container_volume | 27 |
creator | Puchałka, Radosław Dyderski, Marcin K. Vítková, Michaela Sádlo, Jiří Klisz, Marcin Netsvetov, Maksym Prokopuk, Yulia Matisons, Roberts Mionskowski, Marcin Wojda, Tomasz Koprowski, Marcin Jagodziński, Andrzej M. |
description | Robinia pseudoacacia is one of the most frequent non‐native species in Europe. It is a fast‐growing tree of high economic and cultural importance. On the other hand, it is an invasive species, causing changes in soil chemistry and light regime, and consequently altering the plant communities. Previously published models developed for the potential distribution of R. pseudoacacia concerned 2070, and were based mainly on data from Western and Central Europe; here we extended these findings and included additional data from Eastern Europe. To fill the gap in current knowledge of R. pseudoacacia distribution and improve the reliability of forecasts, we aimed to (i) determine the extent to which the outcome of range modeling will be affected by complementing R. pseudoacacia occurrence data with sites from Central, Southeastern, and Eastern Europe, (ii) identify and quantify the changes in the availability of climate niches for 2050 and 2070, and discuss their impacts on forest management and nature conservation. We showed that the majority of the range changes expected in 2070 will occur as early as 2050. In comparison to previous studies, we demonstrated a greater eastward shift of potential niches of this species and a greater decline of potential niches in Southern Europe. Consequently, future climatic conditions will likely favor the occurrence of R. pseudoacacia in Central and Northeastern Europe where this species is still absent or relatively rare. There, controlling the spread of R. pseudoacacia will require monitoring sources of invasion in the landscape and reducing the occurrence of this species. The expected effects of climate change will likely be observed 20 years earlier than previously forecasted. Hence we highlighted the urgent need for acceleration of policies aimed at climate change mitigation in Europe. Also, our results showed the need for using more complete distribution data to analyze potential niche models.
Previously published models of R. pseudoacacia 's potential distribution concerned 2070, and were based on data from Western and Central Europe; here we extended these findings using data from Eastern Europe and 2050. We demonstrated a greater eastward shift of potential niches of this species and a greater decline in Southern Europe. Future climatic conditions will likely favor the occurrence of R. pseudoacacia in Central and Northeastern Europe. The expected effects of climate change will likely be observed 20 years earlier than pr |
doi_str_mv | 10.1111/gcb.15486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509233111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509233111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4196-92df5f078ee1488a13a94ea0d35b11aba40a94cbacc7c0afa1d7720ba7745a6f3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqWw4AeQJTZ0kdaPOI8lrUpBqoSEYB1NHCekpHawE0H_HpcAO2bjGev4jnUQuqRkRn3NK5nPqAiT6AiNKY9EwHx_fOhFGFBC-QidObclhHBGolM04r4iwdgYVYsG5BtujOxdh2-eTF7rGnDrVF8YkCD9sJlNsQVdKSyN7izIrjYagy6w-mxBu8NUa7zqrWkV7nWhLJav_kGtKyybegedOkcnJTROXfycE_Ryt3pe3gebx_XD8nYTyJCmUZCyohQliROlaJgkQDmkoQJScJFTCjmExF_IHKSMJYESaBHHjOQQx6GAqOQTdD3ktta898p12db0VvuVGRMkZZx7YZ6aDpS0xjmryqy1_pt2n1GSHZRmXmn2rdSzVz-Jfb5TxR_569AD8wH4qBu1_z8pWy8XQ-QXSZSAIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509233111</pqid></control><display><type>article</type><title>Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Puchałka, Radosław ; Dyderski, Marcin K. ; Vítková, Michaela ; Sádlo, Jiří ; Klisz, Marcin ; Netsvetov, Maksym ; Prokopuk, Yulia ; Matisons, Roberts ; Mionskowski, Marcin ; Wojda, Tomasz ; Koprowski, Marcin ; Jagodziński, Andrzej M.</creator><creatorcontrib>Puchałka, Radosław ; Dyderski, Marcin K. ; Vítková, Michaela ; Sádlo, Jiří ; Klisz, Marcin ; Netsvetov, Maksym ; Prokopuk, Yulia ; Matisons, Roberts ; Mionskowski, Marcin ; Wojda, Tomasz ; Koprowski, Marcin ; Jagodziński, Andrzej M.</creatorcontrib><description>Robinia pseudoacacia is one of the most frequent non‐native species in Europe. It is a fast‐growing tree of high economic and cultural importance. On the other hand, it is an invasive species, causing changes in soil chemistry and light regime, and consequently altering the plant communities. Previously published models developed for the potential distribution of R. pseudoacacia concerned 2070, and were based mainly on data from Western and Central Europe; here we extended these findings and included additional data from Eastern Europe. To fill the gap in current knowledge of R. pseudoacacia distribution and improve the reliability of forecasts, we aimed to (i) determine the extent to which the outcome of range modeling will be affected by complementing R. pseudoacacia occurrence data with sites from Central, Southeastern, and Eastern Europe, (ii) identify and quantify the changes in the availability of climate niches for 2050 and 2070, and discuss their impacts on forest management and nature conservation. We showed that the majority of the range changes expected in 2070 will occur as early as 2050. In comparison to previous studies, we demonstrated a greater eastward shift of potential niches of this species and a greater decline of potential niches in Southern Europe. Consequently, future climatic conditions will likely favor the occurrence of R. pseudoacacia in Central and Northeastern Europe where this species is still absent or relatively rare. There, controlling the spread of R. pseudoacacia will require monitoring sources of invasion in the landscape and reducing the occurrence of this species. The expected effects of climate change will likely be observed 20 years earlier than previously forecasted. Hence we highlighted the urgent need for acceleration of policies aimed at climate change mitigation in Europe. Also, our results showed the need for using more complete distribution data to analyze potential niche models.
Previously published models of R. pseudoacacia 's potential distribution concerned 2070, and were based on data from Western and Central Europe; here we extended these findings using data from Eastern Europe and 2050. We demonstrated a greater eastward shift of potential niches of this species and a greater decline in Southern Europe. Future climatic conditions will likely favor the occurrence of R. pseudoacacia in Central and Northeastern Europe. The expected effects of climate change will likely be observed 20 years earlier than previously forecasted. Also, our results showed the need for using more complete distribution data to analyze potential niche models.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.15486</identifier><identifier>PMID: 33336522</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>bioclimatic modeling ; biological invasions ; Climate Change ; Climate change mitigation ; Climate effects ; Climatic conditions ; Contraction ; Data ; Distribution ; Economics ; Environmental policy ; Europe ; Europe, Eastern ; Forest conservation ; Forest management ; Indigenous species ; Introduced species ; Invasive species ; Mathematical models ; MaxEnt ; Mitigation ; Native organisms ; Nature conservation ; niche modeling ; Niches ; Plant communities ; Plant populations ; Population decline ; Reproducibility of Results ; Robinia ; Robinia pseudoacacia ; Soil chemistry ; species distribution models</subject><ispartof>Global change biology, 2021-04, Vol.27 (8), p.1587-1600</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd.</rights><rights>Copyright © 2021 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4196-92df5f078ee1488a13a94ea0d35b11aba40a94cbacc7c0afa1d7720ba7745a6f3</citedby><cites>FETCH-LOGICAL-c4196-92df5f078ee1488a13a94ea0d35b11aba40a94cbacc7c0afa1d7720ba7745a6f3</cites><orcidid>0000-0002-4764-0705 ; 0000-0002-0583-4165 ; 0000-0001-9083-6474 ; 0000-0003-4453-2781 ; 0000-0002-2848-7725 ; 0000-0001-9037-3588 ; 0000-0002-9222-521X ; 0000-0002-4042-0689 ; 0000-0001-6899-0985 ; 0000-0001-9723-3334 ; 0000-0001-9486-6988 ; 0000-0001-8844-0219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.15486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.15486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33336522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puchałka, Radosław</creatorcontrib><creatorcontrib>Dyderski, Marcin K.</creatorcontrib><creatorcontrib>Vítková, Michaela</creatorcontrib><creatorcontrib>Sádlo, Jiří</creatorcontrib><creatorcontrib>Klisz, Marcin</creatorcontrib><creatorcontrib>Netsvetov, Maksym</creatorcontrib><creatorcontrib>Prokopuk, Yulia</creatorcontrib><creatorcontrib>Matisons, Roberts</creatorcontrib><creatorcontrib>Mionskowski, Marcin</creatorcontrib><creatorcontrib>Wojda, Tomasz</creatorcontrib><creatorcontrib>Koprowski, Marcin</creatorcontrib><creatorcontrib>Jagodziński, Andrzej M.</creatorcontrib><title>Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Robinia pseudoacacia is one of the most frequent non‐native species in Europe. It is a fast‐growing tree of high economic and cultural importance. On the other hand, it is an invasive species, causing changes in soil chemistry and light regime, and consequently altering the plant communities. Previously published models developed for the potential distribution of R. pseudoacacia concerned 2070, and were based mainly on data from Western and Central Europe; here we extended these findings and included additional data from Eastern Europe. To fill the gap in current knowledge of R. pseudoacacia distribution and improve the reliability of forecasts, we aimed to (i) determine the extent to which the outcome of range modeling will be affected by complementing R. pseudoacacia occurrence data with sites from Central, Southeastern, and Eastern Europe, (ii) identify and quantify the changes in the availability of climate niches for 2050 and 2070, and discuss their impacts on forest management and nature conservation. We showed that the majority of the range changes expected in 2070 will occur as early as 2050. In comparison to previous studies, we demonstrated a greater eastward shift of potential niches of this species and a greater decline of potential niches in Southern Europe. Consequently, future climatic conditions will likely favor the occurrence of R. pseudoacacia in Central and Northeastern Europe where this species is still absent or relatively rare. There, controlling the spread of R. pseudoacacia will require monitoring sources of invasion in the landscape and reducing the occurrence of this species. The expected effects of climate change will likely be observed 20 years earlier than previously forecasted. Hence we highlighted the urgent need for acceleration of policies aimed at climate change mitigation in Europe. Also, our results showed the need for using more complete distribution data to analyze potential niche models.
Previously published models of R. pseudoacacia 's potential distribution concerned 2070, and were based on data from Western and Central Europe; here we extended these findings using data from Eastern Europe and 2050. We demonstrated a greater eastward shift of potential niches of this species and a greater decline in Southern Europe. Future climatic conditions will likely favor the occurrence of R. pseudoacacia in Central and Northeastern Europe. The expected effects of climate change will likely be observed 20 years earlier than previously forecasted. Also, our results showed the need for using more complete distribution data to analyze potential niche models.</description><subject>bioclimatic modeling</subject><subject>biological invasions</subject><subject>Climate Change</subject><subject>Climate change mitigation</subject><subject>Climate effects</subject><subject>Climatic conditions</subject><subject>Contraction</subject><subject>Data</subject><subject>Distribution</subject><subject>Economics</subject><subject>Environmental policy</subject><subject>Europe</subject><subject>Europe, Eastern</subject><subject>Forest conservation</subject><subject>Forest management</subject><subject>Indigenous species</subject><subject>Introduced species</subject><subject>Invasive species</subject><subject>Mathematical models</subject><subject>MaxEnt</subject><subject>Mitigation</subject><subject>Native organisms</subject><subject>Nature conservation</subject><subject>niche modeling</subject><subject>Niches</subject><subject>Plant communities</subject><subject>Plant populations</subject><subject>Population decline</subject><subject>Reproducibility of Results</subject><subject>Robinia</subject><subject>Robinia pseudoacacia</subject><subject>Soil chemistry</subject><subject>species distribution models</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtOwzAQRS0EoqWw4AeQJTZ0kdaPOI8lrUpBqoSEYB1NHCekpHawE0H_HpcAO2bjGev4jnUQuqRkRn3NK5nPqAiT6AiNKY9EwHx_fOhFGFBC-QidObclhHBGolM04r4iwdgYVYsG5BtujOxdh2-eTF7rGnDrVF8YkCD9sJlNsQVdKSyN7izIrjYagy6w-mxBu8NUa7zqrWkV7nWhLJav_kGtKyybegedOkcnJTROXfycE_Ryt3pe3gebx_XD8nYTyJCmUZCyohQliROlaJgkQDmkoQJScJFTCjmExF_IHKSMJYESaBHHjOQQx6GAqOQTdD3ktta898p12db0VvuVGRMkZZx7YZ6aDpS0xjmryqy1_pt2n1GSHZRmXmn2rdSzVz-Jfb5TxR_569AD8wH4qBu1_z8pWy8XQ-QXSZSAIw</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Puchałka, Radosław</creator><creator>Dyderski, Marcin K.</creator><creator>Vítková, Michaela</creator><creator>Sádlo, Jiří</creator><creator>Klisz, Marcin</creator><creator>Netsvetov, Maksym</creator><creator>Prokopuk, Yulia</creator><creator>Matisons, Roberts</creator><creator>Mionskowski, Marcin</creator><creator>Wojda, Tomasz</creator><creator>Koprowski, Marcin</creator><creator>Jagodziński, Andrzej M.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-4764-0705</orcidid><orcidid>https://orcid.org/0000-0002-0583-4165</orcidid><orcidid>https://orcid.org/0000-0001-9083-6474</orcidid><orcidid>https://orcid.org/0000-0003-4453-2781</orcidid><orcidid>https://orcid.org/0000-0002-2848-7725</orcidid><orcidid>https://orcid.org/0000-0001-9037-3588</orcidid><orcidid>https://orcid.org/0000-0002-9222-521X</orcidid><orcidid>https://orcid.org/0000-0002-4042-0689</orcidid><orcidid>https://orcid.org/0000-0001-6899-0985</orcidid><orcidid>https://orcid.org/0000-0001-9723-3334</orcidid><orcidid>https://orcid.org/0000-0001-9486-6988</orcidid><orcidid>https://orcid.org/0000-0001-8844-0219</orcidid></search><sort><creationdate>202104</creationdate><title>Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate</title><author>Puchałka, Radosław ; Dyderski, Marcin K. ; Vítková, Michaela ; Sádlo, Jiří ; Klisz, Marcin ; Netsvetov, Maksym ; Prokopuk, Yulia ; Matisons, Roberts ; Mionskowski, Marcin ; Wojda, Tomasz ; Koprowski, Marcin ; Jagodziński, Andrzej M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4196-92df5f078ee1488a13a94ea0d35b11aba40a94cbacc7c0afa1d7720ba7745a6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bioclimatic modeling</topic><topic>biological invasions</topic><topic>Climate Change</topic><topic>Climate change mitigation</topic><topic>Climate effects</topic><topic>Climatic conditions</topic><topic>Contraction</topic><topic>Data</topic><topic>Distribution</topic><topic>Economics</topic><topic>Environmental policy</topic><topic>Europe</topic><topic>Europe, Eastern</topic><topic>Forest conservation</topic><topic>Forest management</topic><topic>Indigenous species</topic><topic>Introduced species</topic><topic>Invasive species</topic><topic>Mathematical models</topic><topic>MaxEnt</topic><topic>Mitigation</topic><topic>Native organisms</topic><topic>Nature conservation</topic><topic>niche modeling</topic><topic>Niches</topic><topic>Plant communities</topic><topic>Plant populations</topic><topic>Population decline</topic><topic>Reproducibility of Results</topic><topic>Robinia</topic><topic>Robinia pseudoacacia</topic><topic>Soil chemistry</topic><topic>species distribution models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puchałka, Radosław</creatorcontrib><creatorcontrib>Dyderski, Marcin K.</creatorcontrib><creatorcontrib>Vítková, Michaela</creatorcontrib><creatorcontrib>Sádlo, Jiří</creatorcontrib><creatorcontrib>Klisz, Marcin</creatorcontrib><creatorcontrib>Netsvetov, Maksym</creatorcontrib><creatorcontrib>Prokopuk, Yulia</creatorcontrib><creatorcontrib>Matisons, Roberts</creatorcontrib><creatorcontrib>Mionskowski, Marcin</creatorcontrib><creatorcontrib>Wojda, Tomasz</creatorcontrib><creatorcontrib>Koprowski, Marcin</creatorcontrib><creatorcontrib>Jagodziński, Andrzej M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puchałka, Radosław</au><au>Dyderski, Marcin K.</au><au>Vítková, Michaela</au><au>Sádlo, Jiří</au><au>Klisz, Marcin</au><au>Netsvetov, Maksym</au><au>Prokopuk, Yulia</au><au>Matisons, Roberts</au><au>Mionskowski, Marcin</au><au>Wojda, Tomasz</au><au>Koprowski, Marcin</au><au>Jagodziński, Andrzej M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2021-04</date><risdate>2021</risdate><volume>27</volume><issue>8</issue><spage>1587</spage><epage>1600</epage><pages>1587-1600</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Robinia pseudoacacia is one of the most frequent non‐native species in Europe. It is a fast‐growing tree of high economic and cultural importance. On the other hand, it is an invasive species, causing changes in soil chemistry and light regime, and consequently altering the plant communities. Previously published models developed for the potential distribution of R. pseudoacacia concerned 2070, and were based mainly on data from Western and Central Europe; here we extended these findings and included additional data from Eastern Europe. To fill the gap in current knowledge of R. pseudoacacia distribution and improve the reliability of forecasts, we aimed to (i) determine the extent to which the outcome of range modeling will be affected by complementing R. pseudoacacia occurrence data with sites from Central, Southeastern, and Eastern Europe, (ii) identify and quantify the changes in the availability of climate niches for 2050 and 2070, and discuss their impacts on forest management and nature conservation. We showed that the majority of the range changes expected in 2070 will occur as early as 2050. In comparison to previous studies, we demonstrated a greater eastward shift of potential niches of this species and a greater decline of potential niches in Southern Europe. Consequently, future climatic conditions will likely favor the occurrence of R. pseudoacacia in Central and Northeastern Europe where this species is still absent or relatively rare. There, controlling the spread of R. pseudoacacia will require monitoring sources of invasion in the landscape and reducing the occurrence of this species. The expected effects of climate change will likely be observed 20 years earlier than previously forecasted. Hence we highlighted the urgent need for acceleration of policies aimed at climate change mitigation in Europe. Also, our results showed the need for using more complete distribution data to analyze potential niche models.
Previously published models of R. pseudoacacia 's potential distribution concerned 2070, and were based on data from Western and Central Europe; here we extended these findings using data from Eastern Europe and 2050. We demonstrated a greater eastward shift of potential niches of this species and a greater decline in Southern Europe. Future climatic conditions will likely favor the occurrence of R. pseudoacacia in Central and Northeastern Europe. The expected effects of climate change will likely be observed 20 years earlier than previously forecasted. Also, our results showed the need for using more complete distribution data to analyze potential niche models.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33336522</pmid><doi>10.1111/gcb.15486</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4764-0705</orcidid><orcidid>https://orcid.org/0000-0002-0583-4165</orcidid><orcidid>https://orcid.org/0000-0001-9083-6474</orcidid><orcidid>https://orcid.org/0000-0003-4453-2781</orcidid><orcidid>https://orcid.org/0000-0002-2848-7725</orcidid><orcidid>https://orcid.org/0000-0001-9037-3588</orcidid><orcidid>https://orcid.org/0000-0002-9222-521X</orcidid><orcidid>https://orcid.org/0000-0002-4042-0689</orcidid><orcidid>https://orcid.org/0000-0001-6899-0985</orcidid><orcidid>https://orcid.org/0000-0001-9723-3334</orcidid><orcidid>https://orcid.org/0000-0001-9486-6988</orcidid><orcidid>https://orcid.org/0000-0001-8844-0219</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2021-04, Vol.27 (8), p.1587-1600 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_proquest_journals_2509233111 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | bioclimatic modeling biological invasions Climate Change Climate change mitigation Climate effects Climatic conditions Contraction Data Distribution Economics Environmental policy Europe Europe, Eastern Forest conservation Forest management Indigenous species Introduced species Invasive species Mathematical models MaxEnt Mitigation Native organisms Nature conservation niche modeling Niches Plant communities Plant populations Population decline Reproducibility of Results Robinia Robinia pseudoacacia Soil chemistry species distribution models |
title | Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20locust%20(Robinia%20pseudoacacia%20L.)%20range%20contraction%20and%20expansion%20in%20Europe%20under%20changing%20climate&rft.jtitle=Global%20change%20biology&rft.au=Pucha%C5%82ka,%20Rados%C5%82aw&rft.date=2021-04&rft.volume=27&rft.issue=8&rft.spage=1587&rft.epage=1600&rft.pages=1587-1600&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.15486&rft_dat=%3Cproquest_cross%3E2509233111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509233111&rft_id=info:pmid/33336522&rfr_iscdi=true |