Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs

The canonical double cover D(Γ) of a graph Γ is the direct product of Γ and K 2. If Aut ( D ( Γ ) ) ≅ Aut ( Γ ) × Z 2 then Γ is called stable; otherwise Γ is called unstable. An unstable graph is said to be nontrivially unstable if it is connected, non‐bipartite and no two vertices have the same nei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2021-05, Vol.97 (1), p.70-81
Hauptverfasser: Qin, Yan‐Li, Xia, Binzhou, Zhou, Sanming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 1
container_start_page 70
container_title Journal of graph theory
container_volume 97
creator Qin, Yan‐Li
Xia, Binzhou
Zhou, Sanming
description The canonical double cover D(Γ) of a graph Γ is the direct product of Γ and K 2. If Aut ( D ( Γ ) ) ≅ Aut ( Γ ) × Z 2 then Γ is called stable; otherwise Γ is called unstable. An unstable graph is said to be nontrivially unstable if it is connected, non‐bipartite and no two vertices have the same neighborhood. In 2008 Wilson conjectured that, if the generalized Petersen graph GP ( n , k ) is nontrivially unstable, then both n and k are even, and either n / 2 is odd and k 2 ≡ ± 1 ( mod   n / 2 ), or n = 4 k. In this note we prove that this conjecture is true. At the same time we determine all possible isomorphisms among the generalized Petersen graphs, the canonical double covers of the generalized Petersen graphs, and the double generalized Petersen graphs. Based on these we completely determine the full automorphism group of the canonical double cover of GP ( n , k ) for any pair of integers n , k with 1 ⩽ k < n / 2.
doi_str_mv 10.1002/jgt.22642
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509232609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509232609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-52f56f70fb3c72a65b8a6fb29a2c3b098b138f53e99e9ec741163e64d11776e53</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0HAleC0-Zgkk6UUrUpBF3VryGRe6pRxUpOpUn-9o6NLXT24nHsfHIROKZlQQth0veomjMmc7aERJVplhNJiH40Il3mmCcsP0VFKa9LHghQj9DSzbWhrZxtchW3ZAHbhDWLCweMVtBBtU39AhR-g61No8SrazXO6wLatfhv_cMfowNsmwcnPHaPH66vl7CZb3M9vZ5eLzDGtWCaYF9Ir4kvuFLNSlIWVvmTaMsdLoouS8sILDlqDBqdySiUHmVeUKiVB8DE6G3Y3MbxuIXVmHbax7V8aJohmnEmie-p8oFwMKUXwZhPrFxt3hhLzpc_0-sy3vp6dDux73cDub9DczZdD4xNsDHFi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509232609</pqid></control><display><type>article</type><title>Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs</title><source>Access via Wiley Online Library</source><creator>Qin, Yan‐Li ; Xia, Binzhou ; Zhou, Sanming</creator><creatorcontrib>Qin, Yan‐Li ; Xia, Binzhou ; Zhou, Sanming</creatorcontrib><description>The canonical double cover D(Γ) of a graph Γ is the direct product of Γ and K 2. If Aut ( D ( Γ ) ) ≅ Aut ( Γ ) × Z 2 then Γ is called stable; otherwise Γ is called unstable. An unstable graph is said to be nontrivially unstable if it is connected, non‐bipartite and no two vertices have the same neighborhood. In 2008 Wilson conjectured that, if the generalized Petersen graph GP ( n , k ) is nontrivially unstable, then both n and k are even, and either n / 2 is odd and k 2 ≡ ± 1 ( mod   n / 2 ), or n = 4 k. In this note we prove that this conjecture is true. At the same time we determine all possible isomorphisms among the generalized Petersen graphs, the canonical double covers of the generalized Petersen graphs, and the double generalized Petersen graphs. Based on these we completely determine the full automorphism group of the canonical double cover of GP ( n , k ) for any pair of integers n , k with 1 ⩽ k &lt; n / 2.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22642</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Apexes ; Automorphisms ; canonical double cover ; double generalized Petersen graph ; generalized Petersen graph ; Graphs ; Isomorphism ; stable graph</subject><ispartof>Journal of graph theory, 2021-05, Vol.97 (1), p.70-81</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-52f56f70fb3c72a65b8a6fb29a2c3b098b138f53e99e9ec741163e64d11776e53</citedby><cites>FETCH-LOGICAL-c2972-52f56f70fb3c72a65b8a6fb29a2c3b098b138f53e99e9ec741163e64d11776e53</cites><orcidid>0000-0002-8031-2981 ; 0000-0001-9854-6076 ; 0000-0002-1578-2493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Qin, Yan‐Li</creatorcontrib><creatorcontrib>Xia, Binzhou</creatorcontrib><creatorcontrib>Zhou, Sanming</creatorcontrib><title>Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs</title><title>Journal of graph theory</title><description>The canonical double cover D(Γ) of a graph Γ is the direct product of Γ and K 2. If Aut ( D ( Γ ) ) ≅ Aut ( Γ ) × Z 2 then Γ is called stable; otherwise Γ is called unstable. An unstable graph is said to be nontrivially unstable if it is connected, non‐bipartite and no two vertices have the same neighborhood. In 2008 Wilson conjectured that, if the generalized Petersen graph GP ( n , k ) is nontrivially unstable, then both n and k are even, and either n / 2 is odd and k 2 ≡ ± 1 ( mod   n / 2 ), or n = 4 k. In this note we prove that this conjecture is true. At the same time we determine all possible isomorphisms among the generalized Petersen graphs, the canonical double covers of the generalized Petersen graphs, and the double generalized Petersen graphs. Based on these we completely determine the full automorphism group of the canonical double cover of GP ( n , k ) for any pair of integers n , k with 1 ⩽ k &lt; n / 2.</description><subject>Apexes</subject><subject>Automorphisms</subject><subject>canonical double cover</subject><subject>double generalized Petersen graph</subject><subject>generalized Petersen graph</subject><subject>Graphs</subject><subject>Isomorphism</subject><subject>stable graph</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0HAleC0-Zgkk6UUrUpBF3VryGRe6pRxUpOpUn-9o6NLXT24nHsfHIROKZlQQth0veomjMmc7aERJVplhNJiH40Il3mmCcsP0VFKa9LHghQj9DSzbWhrZxtchW3ZAHbhDWLCweMVtBBtU39AhR-g61No8SrazXO6wLatfhv_cMfowNsmwcnPHaPH66vl7CZb3M9vZ5eLzDGtWCaYF9Ir4kvuFLNSlIWVvmTaMsdLoouS8sILDlqDBqdySiUHmVeUKiVB8DE6G3Y3MbxuIXVmHbax7V8aJohmnEmie-p8oFwMKUXwZhPrFxt3hhLzpc_0-sy3vp6dDux73cDub9DczZdD4xNsDHFi</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Qin, Yan‐Li</creator><creator>Xia, Binzhou</creator><creator>Zhou, Sanming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8031-2981</orcidid><orcidid>https://orcid.org/0000-0001-9854-6076</orcidid><orcidid>https://orcid.org/0000-0002-1578-2493</orcidid></search><sort><creationdate>202105</creationdate><title>Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs</title><author>Qin, Yan‐Li ; Xia, Binzhou ; Zhou, Sanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-52f56f70fb3c72a65b8a6fb29a2c3b098b138f53e99e9ec741163e64d11776e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Automorphisms</topic><topic>canonical double cover</topic><topic>double generalized Petersen graph</topic><topic>generalized Petersen graph</topic><topic>Graphs</topic><topic>Isomorphism</topic><topic>stable graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yan‐Li</creatorcontrib><creatorcontrib>Xia, Binzhou</creatorcontrib><creatorcontrib>Zhou, Sanming</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yan‐Li</au><au>Xia, Binzhou</au><au>Zhou, Sanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs</atitle><jtitle>Journal of graph theory</jtitle><date>2021-05</date><risdate>2021</risdate><volume>97</volume><issue>1</issue><spage>70</spage><epage>81</epage><pages>70-81</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>The canonical double cover D(Γ) of a graph Γ is the direct product of Γ and K 2. If Aut ( D ( Γ ) ) ≅ Aut ( Γ ) × Z 2 then Γ is called stable; otherwise Γ is called unstable. An unstable graph is said to be nontrivially unstable if it is connected, non‐bipartite and no two vertices have the same neighborhood. In 2008 Wilson conjectured that, if the generalized Petersen graph GP ( n , k ) is nontrivially unstable, then both n and k are even, and either n / 2 is odd and k 2 ≡ ± 1 ( mod   n / 2 ), or n = 4 k. In this note we prove that this conjecture is true. At the same time we determine all possible isomorphisms among the generalized Petersen graphs, the canonical double covers of the generalized Petersen graphs, and the double generalized Petersen graphs. Based on these we completely determine the full automorphism group of the canonical double cover of GP ( n , k ) for any pair of integers n , k with 1 ⩽ k &lt; n / 2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22642</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8031-2981</orcidid><orcidid>https://orcid.org/0000-0001-9854-6076</orcidid><orcidid>https://orcid.org/0000-0002-1578-2493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2021-05, Vol.97 (1), p.70-81
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_2509232609
source Access via Wiley Online Library
subjects Apexes
Automorphisms
canonical double cover
double generalized Petersen graph
generalized Petersen graph
Graphs
Isomorphism
stable graph
title Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20double%20covers%20of%20generalized%20Petersen%20graphs,%20and%20double%20generalized%20Petersen%20graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Qin,%20Yan%E2%80%90Li&rft.date=2021-05&rft.volume=97&rft.issue=1&rft.spage=70&rft.epage=81&rft.pages=70-81&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22642&rft_dat=%3Cproquest_cross%3E2509232609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509232609&rft_id=info:pmid/&rfr_iscdi=true