Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs
The canonical double cover D(Γ) of a graph Γ is the direct product of Γ and K 2. If Aut ( D ( Γ ) ) ≅ Aut ( Γ ) × Z 2 then Γ is called stable; otherwise Γ is called unstable. An unstable graph is said to be nontrivially unstable if it is connected, non‐bipartite and no two vertices have the same nei...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2021-05, Vol.97 (1), p.70-81 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | 1 |
container_start_page | 70 |
container_title | Journal of graph theory |
container_volume | 97 |
creator | Qin, Yan‐Li Xia, Binzhou Zhou, Sanming |
description | The canonical double cover D(Γ) of a graph
Γ is the direct product of
Γ and
K
2. If
Aut
(
D
(
Γ
)
)
≅
Aut
(
Γ
)
×
Z
2 then
Γ is called stable; otherwise
Γ is called unstable. An unstable graph is said to be nontrivially unstable if it is connected, non‐bipartite and no two vertices have the same neighborhood. In 2008 Wilson conjectured that, if the generalized Petersen graph
GP
(
n
,
k
) is nontrivially unstable, then both
n and
k are even, and either
n
/
2 is odd and
k
2
≡
±
1
(
mod
n
/
2
), or
n
=
4
k. In this note we prove that this conjecture is true. At the same time we determine all possible isomorphisms among the generalized Petersen graphs, the canonical double covers of the generalized Petersen graphs, and the double generalized Petersen graphs. Based on these we completely determine the full automorphism group of the canonical double cover of
GP
(
n
,
k
) for any pair of integers
n
,
k with
1
⩽
k
<
n
/
2. |
doi_str_mv | 10.1002/jgt.22642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509232609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509232609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-52f56f70fb3c72a65b8a6fb29a2c3b098b138f53e99e9ec741163e64d11776e53</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0HAleC0-Zgkk6UUrUpBF3VryGRe6pRxUpOpUn-9o6NLXT24nHsfHIROKZlQQth0veomjMmc7aERJVplhNJiH40Il3mmCcsP0VFKa9LHghQj9DSzbWhrZxtchW3ZAHbhDWLCweMVtBBtU39AhR-g61No8SrazXO6wLatfhv_cMfowNsmwcnPHaPH66vl7CZb3M9vZ5eLzDGtWCaYF9Ir4kvuFLNSlIWVvmTaMsdLoouS8sILDlqDBqdySiUHmVeUKiVB8DE6G3Y3MbxuIXVmHbax7V8aJohmnEmie-p8oFwMKUXwZhPrFxt3hhLzpc_0-sy3vp6dDux73cDub9DczZdD4xNsDHFi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509232609</pqid></control><display><type>article</type><title>Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs</title><source>Access via Wiley Online Library</source><creator>Qin, Yan‐Li ; Xia, Binzhou ; Zhou, Sanming</creator><creatorcontrib>Qin, Yan‐Li ; Xia, Binzhou ; Zhou, Sanming</creatorcontrib><description>The canonical double cover D(Γ) of a graph
Γ is the direct product of
Γ and
K
2. If
Aut
(
D
(
Γ
)
)
≅
Aut
(
Γ
)
×
Z
2 then
Γ is called stable; otherwise
Γ is called unstable. An unstable graph is said to be nontrivially unstable if it is connected, non‐bipartite and no two vertices have the same neighborhood. In 2008 Wilson conjectured that, if the generalized Petersen graph
GP
(
n
,
k
) is nontrivially unstable, then both
n and
k are even, and either
n
/
2 is odd and
k
2
≡
±
1
(
mod
n
/
2
), or
n
=
4
k. In this note we prove that this conjecture is true. At the same time we determine all possible isomorphisms among the generalized Petersen graphs, the canonical double covers of the generalized Petersen graphs, and the double generalized Petersen graphs. Based on these we completely determine the full automorphism group of the canonical double cover of
GP
(
n
,
k
) for any pair of integers
n
,
k with
1
⩽
k
<
n
/
2.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22642</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Apexes ; Automorphisms ; canonical double cover ; double generalized Petersen graph ; generalized Petersen graph ; Graphs ; Isomorphism ; stable graph</subject><ispartof>Journal of graph theory, 2021-05, Vol.97 (1), p.70-81</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-52f56f70fb3c72a65b8a6fb29a2c3b098b138f53e99e9ec741163e64d11776e53</citedby><cites>FETCH-LOGICAL-c2972-52f56f70fb3c72a65b8a6fb29a2c3b098b138f53e99e9ec741163e64d11776e53</cites><orcidid>0000-0002-8031-2981 ; 0000-0001-9854-6076 ; 0000-0002-1578-2493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Qin, Yan‐Li</creatorcontrib><creatorcontrib>Xia, Binzhou</creatorcontrib><creatorcontrib>Zhou, Sanming</creatorcontrib><title>Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs</title><title>Journal of graph theory</title><description>The canonical double cover D(Γ) of a graph
Γ is the direct product of
Γ and
K
2. If
Aut
(
D
(
Γ
)
)
≅
Aut
(
Γ
)
×
Z
2 then
Γ is called stable; otherwise
Γ is called unstable. An unstable graph is said to be nontrivially unstable if it is connected, non‐bipartite and no two vertices have the same neighborhood. In 2008 Wilson conjectured that, if the generalized Petersen graph
GP
(
n
,
k
) is nontrivially unstable, then both
n and
k are even, and either
n
/
2 is odd and
k
2
≡
±
1
(
mod
n
/
2
), or
n
=
4
k. In this note we prove that this conjecture is true. At the same time we determine all possible isomorphisms among the generalized Petersen graphs, the canonical double covers of the generalized Petersen graphs, and the double generalized Petersen graphs. Based on these we completely determine the full automorphism group of the canonical double cover of
GP
(
n
,
k
) for any pair of integers
n
,
k with
1
⩽
k
<
n
/
2.</description><subject>Apexes</subject><subject>Automorphisms</subject><subject>canonical double cover</subject><subject>double generalized Petersen graph</subject><subject>generalized Petersen graph</subject><subject>Graphs</subject><subject>Isomorphism</subject><subject>stable graph</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0HAleC0-Zgkk6UUrUpBF3VryGRe6pRxUpOpUn-9o6NLXT24nHsfHIROKZlQQth0veomjMmc7aERJVplhNJiH40Il3mmCcsP0VFKa9LHghQj9DSzbWhrZxtchW3ZAHbhDWLCweMVtBBtU39AhR-g61No8SrazXO6wLatfhv_cMfowNsmwcnPHaPH66vl7CZb3M9vZ5eLzDGtWCaYF9Ir4kvuFLNSlIWVvmTaMsdLoouS8sILDlqDBqdySiUHmVeUKiVB8DE6G3Y3MbxuIXVmHbax7V8aJohmnEmie-p8oFwMKUXwZhPrFxt3hhLzpc_0-sy3vp6dDux73cDub9DczZdD4xNsDHFi</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Qin, Yan‐Li</creator><creator>Xia, Binzhou</creator><creator>Zhou, Sanming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8031-2981</orcidid><orcidid>https://orcid.org/0000-0001-9854-6076</orcidid><orcidid>https://orcid.org/0000-0002-1578-2493</orcidid></search><sort><creationdate>202105</creationdate><title>Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs</title><author>Qin, Yan‐Li ; Xia, Binzhou ; Zhou, Sanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-52f56f70fb3c72a65b8a6fb29a2c3b098b138f53e99e9ec741163e64d11776e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Automorphisms</topic><topic>canonical double cover</topic><topic>double generalized Petersen graph</topic><topic>generalized Petersen graph</topic><topic>Graphs</topic><topic>Isomorphism</topic><topic>stable graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yan‐Li</creatorcontrib><creatorcontrib>Xia, Binzhou</creatorcontrib><creatorcontrib>Zhou, Sanming</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yan‐Li</au><au>Xia, Binzhou</au><au>Zhou, Sanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs</atitle><jtitle>Journal of graph theory</jtitle><date>2021-05</date><risdate>2021</risdate><volume>97</volume><issue>1</issue><spage>70</spage><epage>81</epage><pages>70-81</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>The canonical double cover D(Γ) of a graph
Γ is the direct product of
Γ and
K
2. If
Aut
(
D
(
Γ
)
)
≅
Aut
(
Γ
)
×
Z
2 then
Γ is called stable; otherwise
Γ is called unstable. An unstable graph is said to be nontrivially unstable if it is connected, non‐bipartite and no two vertices have the same neighborhood. In 2008 Wilson conjectured that, if the generalized Petersen graph
GP
(
n
,
k
) is nontrivially unstable, then both
n and
k are even, and either
n
/
2 is odd and
k
2
≡
±
1
(
mod
n
/
2
), or
n
=
4
k. In this note we prove that this conjecture is true. At the same time we determine all possible isomorphisms among the generalized Petersen graphs, the canonical double covers of the generalized Petersen graphs, and the double generalized Petersen graphs. Based on these we completely determine the full automorphism group of the canonical double cover of
GP
(
n
,
k
) for any pair of integers
n
,
k with
1
⩽
k
<
n
/
2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22642</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8031-2981</orcidid><orcidid>https://orcid.org/0000-0001-9854-6076</orcidid><orcidid>https://orcid.org/0000-0002-1578-2493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 2021-05, Vol.97 (1), p.70-81 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_proquest_journals_2509232609 |
source | Access via Wiley Online Library |
subjects | Apexes Automorphisms canonical double cover double generalized Petersen graph generalized Petersen graph Graphs Isomorphism stable graph |
title | Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20double%20covers%20of%20generalized%20Petersen%20graphs,%20and%20double%20generalized%20Petersen%20graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Qin,%20Yan%E2%80%90Li&rft.date=2021-05&rft.volume=97&rft.issue=1&rft.spage=70&rft.epage=81&rft.pages=70-81&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22642&rft_dat=%3Cproquest_cross%3E2509232609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509232609&rft_id=info:pmid/&rfr_iscdi=true |