Asymmetric shock deformation at the Spider impact structure, Western Australia
The distribution of shock deformation effects, as well as the structural expression of an impact structure, can be asymmetric, depending on target rock lithologies (e.g., layered versus homogenous), porosity of target rock, and angle of impact. Here, we present a detailed study of shock‐deformed qua...
Gespeichert in:
Veröffentlicht in: | Meteoritics & planetary science 2021-02, Vol.56 (2), p.331-351 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | 2 |
container_start_page | 331 |
container_title | Meteoritics & planetary science |
container_volume | 56 |
creator | Cox, Morgan A. Cavosie, Aaron J. Poelchau, Michael H. Kenkmann, Thomas Miljković, Katarina Bland, Phil A. |
description | The distribution of shock deformation effects, as well as the structural expression of an impact structure, can be asymmetric, depending on target rock lithologies (e.g., layered versus homogenous), porosity of target rock, and angle of impact. Here, we present a detailed study of shock‐deformed quartz and zircon in silicified sandstones from the asymmetric Spider impact structure in Australia. We utilize optical microscopy and electron backscatter diffraction (EBSD) techniques in order to determine the spatial distribution of shock‐deformed zircon along a downrange transect across the central uplift of the structure, with the goal of constraining the physical distribution of shock effects created by an oblique impact. A total of 453 zircon grains from 12 samples of shatter cone‐bearing quartzite and breccia within the structure were surveyed for shock deformation by EBSD in situ within thin sections. Nineteen zircon grains contain {112} twins, including one grain with three twin orientations. Quartz grains from five samples along the transect were also surveyed using a universal stage in order to determine orientations of planar deformation features, planar fractures, and feather features, and to provide a baseline for comparison of data from zircon. The distribution of shocked zircon with {112} twins within the samples surveyed appears to be asymmetric relative to the center of the structure, in contrast to quartz, thus providing the first accessory mineral‐based evidence that supports an asymmetric distribution of shock deformation as a function of impact obliquity. Our results are an example where the highest intensity of observed shock deformation does not correspond to the geographic center of the structure, and may serve as a guide for field studies aimed at documenting the distribution of shock effects at other sites interpreted to result from oblique impacts. |
doi_str_mv | 10.1111/maps.13621 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509226173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509226173</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3901-78763ee5b902b458fca91bf657d242e82fe0f781f5b4c0e05bbf566b5740a9293</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMouK5e_AUBb2LXPJqmOZbFF_iCVTyGNDthu263NUmR_fdmrWfnMsPwzYMPoXNKZjTFdWv6MKO8YPQATajKRSYoIYepJmWRKS7VMToJYU0IF5TnE_RchV3bQvSNxWHV2U-8BNf51sSm22ITcVwBXvTNEjxu2t7YiEP0g42Dhyv8ASGC3-JqSE2zacwpOnJmE-DsL0_R--3N2_w-e3y5e5hXj5nhitBMlrLgAKJWhNW5KJ01itauEHLJcgYlc0CcLKkTdW4JEFHXThRFLWROjGKKT9HFuLf33deQvtDrbvDbdFIzQRRjBZU8UZcjZX0Xggene9-0xu80JXrvS-996V9fCaYj_N1sYPcPqZ-q18U48wN6cm1V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509226173</pqid></control><display><type>article</type><title>Asymmetric shock deformation at the Spider impact structure, Western Australia</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Cox, Morgan A. ; Cavosie, Aaron J. ; Poelchau, Michael H. ; Kenkmann, Thomas ; Miljković, Katarina ; Bland, Phil A.</creator><creatorcontrib>Cox, Morgan A. ; Cavosie, Aaron J. ; Poelchau, Michael H. ; Kenkmann, Thomas ; Miljković, Katarina ; Bland, Phil A.</creatorcontrib><description>The distribution of shock deformation effects, as well as the structural expression of an impact structure, can be asymmetric, depending on target rock lithologies (e.g., layered versus homogenous), porosity of target rock, and angle of impact. Here, we present a detailed study of shock‐deformed quartz and zircon in silicified sandstones from the asymmetric Spider impact structure in Australia. We utilize optical microscopy and electron backscatter diffraction (EBSD) techniques in order to determine the spatial distribution of shock‐deformed zircon along a downrange transect across the central uplift of the structure, with the goal of constraining the physical distribution of shock effects created by an oblique impact. A total of 453 zircon grains from 12 samples of shatter cone‐bearing quartzite and breccia within the structure were surveyed for shock deformation by EBSD in situ within thin sections. Nineteen zircon grains contain {112} twins, including one grain with three twin orientations. Quartz grains from five samples along the transect were also surveyed using a universal stage in order to determine orientations of planar deformation features, planar fractures, and feather features, and to provide a baseline for comparison of data from zircon. The distribution of shocked zircon with {112} twins within the samples surveyed appears to be asymmetric relative to the center of the structure, in contrast to quartz, thus providing the first accessory mineral‐based evidence that supports an asymmetric distribution of shock deformation as a function of impact obliquity. Our results are an example where the highest intensity of observed shock deformation does not correspond to the geographic center of the structure, and may serve as a guide for field studies aimed at documenting the distribution of shock effects at other sites interpreted to result from oblique impacts.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.13621</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Backscatter ; Breccia ; Deformation ; Deformation effects ; Downrange ; Electron backscatter diffraction ; Fractures ; Grains ; Light microscopy ; Optical microscopy ; Porosity ; Quartz ; Quartzite ; Rocks ; Sandstone ; Skewed distributions ; Spatial distribution ; Zircon</subject><ispartof>Meteoritics & planetary science, 2021-02, Vol.56 (2), p.331-351</ispartof><rights>2021 The Meteoritical Society (MET)</rights><rights>Copyright © 2021 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3901-78763ee5b902b458fca91bf657d242e82fe0f781f5b4c0e05bbf566b5740a9293</citedby><cites>FETCH-LOGICAL-a3901-78763ee5b902b458fca91bf657d242e82fe0f781f5b4c0e05bbf566b5740a9293</cites><orcidid>0000-0002-8127-6812 ; 0000-0002-6844-7023 ; 0000-0001-9212-8949 ; 0000-0001-6819-6810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmaps.13621$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmaps.13621$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Cox, Morgan A.</creatorcontrib><creatorcontrib>Cavosie, Aaron J.</creatorcontrib><creatorcontrib>Poelchau, Michael H.</creatorcontrib><creatorcontrib>Kenkmann, Thomas</creatorcontrib><creatorcontrib>Miljković, Katarina</creatorcontrib><creatorcontrib>Bland, Phil A.</creatorcontrib><title>Asymmetric shock deformation at the Spider impact structure, Western Australia</title><title>Meteoritics & planetary science</title><description>The distribution of shock deformation effects, as well as the structural expression of an impact structure, can be asymmetric, depending on target rock lithologies (e.g., layered versus homogenous), porosity of target rock, and angle of impact. Here, we present a detailed study of shock‐deformed quartz and zircon in silicified sandstones from the asymmetric Spider impact structure in Australia. We utilize optical microscopy and electron backscatter diffraction (EBSD) techniques in order to determine the spatial distribution of shock‐deformed zircon along a downrange transect across the central uplift of the structure, with the goal of constraining the physical distribution of shock effects created by an oblique impact. A total of 453 zircon grains from 12 samples of shatter cone‐bearing quartzite and breccia within the structure were surveyed for shock deformation by EBSD in situ within thin sections. Nineteen zircon grains contain {112} twins, including one grain with three twin orientations. Quartz grains from five samples along the transect were also surveyed using a universal stage in order to determine orientations of planar deformation features, planar fractures, and feather features, and to provide a baseline for comparison of data from zircon. The distribution of shocked zircon with {112} twins within the samples surveyed appears to be asymmetric relative to the center of the structure, in contrast to quartz, thus providing the first accessory mineral‐based evidence that supports an asymmetric distribution of shock deformation as a function of impact obliquity. Our results are an example where the highest intensity of observed shock deformation does not correspond to the geographic center of the structure, and may serve as a guide for field studies aimed at documenting the distribution of shock effects at other sites interpreted to result from oblique impacts.</description><subject>Backscatter</subject><subject>Breccia</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Downrange</subject><subject>Electron backscatter diffraction</subject><subject>Fractures</subject><subject>Grains</subject><subject>Light microscopy</subject><subject>Optical microscopy</subject><subject>Porosity</subject><subject>Quartz</subject><subject>Quartzite</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Skewed distributions</subject><subject>Spatial distribution</subject><subject>Zircon</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIMouK5e_AUBb2LXPJqmOZbFF_iCVTyGNDthu263NUmR_fdmrWfnMsPwzYMPoXNKZjTFdWv6MKO8YPQATajKRSYoIYepJmWRKS7VMToJYU0IF5TnE_RchV3bQvSNxWHV2U-8BNf51sSm22ITcVwBXvTNEjxu2t7YiEP0g42Dhyv8ASGC3-JqSE2zacwpOnJmE-DsL0_R--3N2_w-e3y5e5hXj5nhitBMlrLgAKJWhNW5KJ01itauEHLJcgYlc0CcLKkTdW4JEFHXThRFLWROjGKKT9HFuLf33deQvtDrbvDbdFIzQRRjBZU8UZcjZX0Xggene9-0xu80JXrvS-996V9fCaYj_N1sYPcPqZ-q18U48wN6cm1V</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Cox, Morgan A.</creator><creator>Cavosie, Aaron J.</creator><creator>Poelchau, Michael H.</creator><creator>Kenkmann, Thomas</creator><creator>Miljković, Katarina</creator><creator>Bland, Phil A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8127-6812</orcidid><orcidid>https://orcid.org/0000-0002-6844-7023</orcidid><orcidid>https://orcid.org/0000-0001-9212-8949</orcidid><orcidid>https://orcid.org/0000-0001-6819-6810</orcidid></search><sort><creationdate>202102</creationdate><title>Asymmetric shock deformation at the Spider impact structure, Western Australia</title><author>Cox, Morgan A. ; Cavosie, Aaron J. ; Poelchau, Michael H. ; Kenkmann, Thomas ; Miljković, Katarina ; Bland, Phil A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3901-78763ee5b902b458fca91bf657d242e82fe0f781f5b4c0e05bbf566b5740a9293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Backscatter</topic><topic>Breccia</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Downrange</topic><topic>Electron backscatter diffraction</topic><topic>Fractures</topic><topic>Grains</topic><topic>Light microscopy</topic><topic>Optical microscopy</topic><topic>Porosity</topic><topic>Quartz</topic><topic>Quartzite</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Skewed distributions</topic><topic>Spatial distribution</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox, Morgan A.</creatorcontrib><creatorcontrib>Cavosie, Aaron J.</creatorcontrib><creatorcontrib>Poelchau, Michael H.</creatorcontrib><creatorcontrib>Kenkmann, Thomas</creatorcontrib><creatorcontrib>Miljković, Katarina</creatorcontrib><creatorcontrib>Bland, Phil A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics & planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox, Morgan A.</au><au>Cavosie, Aaron J.</au><au>Poelchau, Michael H.</au><au>Kenkmann, Thomas</au><au>Miljković, Katarina</au><au>Bland, Phil A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric shock deformation at the Spider impact structure, Western Australia</atitle><jtitle>Meteoritics & planetary science</jtitle><date>2021-02</date><risdate>2021</risdate><volume>56</volume><issue>2</issue><spage>331</spage><epage>351</epage><pages>331-351</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>The distribution of shock deformation effects, as well as the structural expression of an impact structure, can be asymmetric, depending on target rock lithologies (e.g., layered versus homogenous), porosity of target rock, and angle of impact. Here, we present a detailed study of shock‐deformed quartz and zircon in silicified sandstones from the asymmetric Spider impact structure in Australia. We utilize optical microscopy and electron backscatter diffraction (EBSD) techniques in order to determine the spatial distribution of shock‐deformed zircon along a downrange transect across the central uplift of the structure, with the goal of constraining the physical distribution of shock effects created by an oblique impact. A total of 453 zircon grains from 12 samples of shatter cone‐bearing quartzite and breccia within the structure were surveyed for shock deformation by EBSD in situ within thin sections. Nineteen zircon grains contain {112} twins, including one grain with three twin orientations. Quartz grains from five samples along the transect were also surveyed using a universal stage in order to determine orientations of planar deformation features, planar fractures, and feather features, and to provide a baseline for comparison of data from zircon. The distribution of shocked zircon with {112} twins within the samples surveyed appears to be asymmetric relative to the center of the structure, in contrast to quartz, thus providing the first accessory mineral‐based evidence that supports an asymmetric distribution of shock deformation as a function of impact obliquity. Our results are an example where the highest intensity of observed shock deformation does not correspond to the geographic center of the structure, and may serve as a guide for field studies aimed at documenting the distribution of shock effects at other sites interpreted to result from oblique impacts.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/maps.13621</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8127-6812</orcidid><orcidid>https://orcid.org/0000-0002-6844-7023</orcidid><orcidid>https://orcid.org/0000-0001-9212-8949</orcidid><orcidid>https://orcid.org/0000-0001-6819-6810</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1086-9379 |
ispartof | Meteoritics & planetary science, 2021-02, Vol.56 (2), p.331-351 |
issn | 1086-9379 1945-5100 |
language | eng |
recordid | cdi_proquest_journals_2509226173 |
source | Wiley Free Content; Wiley Online Library All Journals |
subjects | Backscatter Breccia Deformation Deformation effects Downrange Electron backscatter diffraction Fractures Grains Light microscopy Optical microscopy Porosity Quartz Quartzite Rocks Sandstone Skewed distributions Spatial distribution Zircon |
title | Asymmetric shock deformation at the Spider impact structure, Western Australia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20shock%20deformation%20at%20the%20Spider%20impact%20structure,%20Western%20Australia&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Cox,%20Morgan%20A.&rft.date=2021-02&rft.volume=56&rft.issue=2&rft.spage=331&rft.epage=351&rft.pages=331-351&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/maps.13621&rft_dat=%3Cproquest_cross%3E2509226173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509226173&rft_id=info:pmid/&rfr_iscdi=true |