Evaluating Phospholipid‐Functionalized Gold Nanorods for In Vivo Applications

Gold nanorods (AuNRs) have attracted a great deal of attention due to their potential for use in a wide range of biomedical applications. However, their production typically requires the use of the relatively toxic cationic surfactant cetyltrimethylammonium bromide (CTAB) leading to continued demand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-04, Vol.17 (13), p.e2006797-n/a
Hauptverfasser: Roach, Lucien, Booth, Mary E., Ingram, Nicola, Paterson, Daniel A., Batchelor, Damien V. B., Moorcroft, Samuel C. T., Bushby, Richard J., Critchley, Kevin, Coletta, P. Louise, Evans, Stephen D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page e2006797
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Roach, Lucien
Booth, Mary E.
Ingram, Nicola
Paterson, Daniel A.
Batchelor, Damien V. B.
Moorcroft, Samuel C. T.
Bushby, Richard J.
Critchley, Kevin
Coletta, P. Louise
Evans, Stephen D.
description Gold nanorods (AuNRs) have attracted a great deal of attention due to their potential for use in a wide range of biomedical applications. However, their production typically requires the use of the relatively toxic cationic surfactant cetyltrimethylammonium bromide (CTAB) leading to continued demand for protocols to detoxify them for in vivo applications. In this study, a robust and facile protocol for the displacement of CTAB from the surface of AuNRs using phospholipids is presented. After the displacement, CTAB is not detectable by NMR spectroscopy, surface‐enhanced Raman spectroscopy, or using pH‐dependent ζ‐potential measurements. The phospholipid functionalized AuNRs demonstrated superior stability and biocompatibility (IC50 > 200 µg mL−1) compared to both CTAB and polyelectrolyte functionalized AuNRs and are well tolerated in vivo. Furthermore, they have high near‐infrared (NIR) absorbance and produce large amounts of heat under NIR illumination, hence such particles are well suited for plasmonic medical applications. Phospholipids offer a robust, inexpensive, and facile method for the displacement of the toxic surfactant cetyltrimethylammonium bromide (CTAB) from gold nanorods (AuNRs). Removal of CTAB is of considerable importance for the biological application of AuNRs. Phospholipid AuNRs demonstrated superior stability compared to CTAB and polyelectrolyte functionalizations. Both in vitro and in vivo models demonstrated that they are highly biocompatible.
doi_str_mv 10.1002/smll.202006797
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509224606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509224606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4797-1624afc2e12291ecb237aded362967b594fbb3e1953759834c900e20915222223</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EoqWwMqJIzCn2deLUY1W1pVKgSPyslpM41JUbh7gpKhOPwDPyJCRqKSN3uXc499Ong9AlwX2CMdy4lTF9wIAxi3h0hLqEEeqzAfDjw01wB505t8SYEgiiU9ShtCEoY100H2-kqeVaF6_ew8K6cmGNLnX2_fk1qYt0rW0hjf5QmTe1JvPuZWErmzkvt5U3K7wXvbHesCyNTmXLunN0kkvj1MV-99DzZPw0uvXj-XQ2GsZ-GjQ9fcIgkHkKigBwotIEaCQzlVEGnEVJyIM8SagiPKRRyAc0SDnGCjAnIbRDe-h6l1tW9q1Wbi2Wtq6ark5AiDlAwDBrqP6OSivrXKVyUVZ6JautIFi0_kTrTxz8NQ9X-9g6WansgP8KawC-A961Udt_4sTjXRz_hf8AUpJ8qQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509224606</pqid></control><display><type>article</type><title>Evaluating Phospholipid‐Functionalized Gold Nanorods for In Vivo Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Roach, Lucien ; Booth, Mary E. ; Ingram, Nicola ; Paterson, Daniel A. ; Batchelor, Damien V. B. ; Moorcroft, Samuel C. T. ; Bushby, Richard J. ; Critchley, Kevin ; Coletta, P. Louise ; Evans, Stephen D.</creator><creatorcontrib>Roach, Lucien ; Booth, Mary E. ; Ingram, Nicola ; Paterson, Daniel A. ; Batchelor, Damien V. B. ; Moorcroft, Samuel C. T. ; Bushby, Richard J. ; Critchley, Kevin ; Coletta, P. Louise ; Evans, Stephen D.</creatorcontrib><description>Gold nanorods (AuNRs) have attracted a great deal of attention due to their potential for use in a wide range of biomedical applications. However, their production typically requires the use of the relatively toxic cationic surfactant cetyltrimethylammonium bromide (CTAB) leading to continued demand for protocols to detoxify them for in vivo applications. In this study, a robust and facile protocol for the displacement of CTAB from the surface of AuNRs using phospholipids is presented. After the displacement, CTAB is not detectable by NMR spectroscopy, surface‐enhanced Raman spectroscopy, or using pH‐dependent ζ‐potential measurements. The phospholipid functionalized AuNRs demonstrated superior stability and biocompatibility (IC50 &gt; 200 µg mL−1) compared to both CTAB and polyelectrolyte functionalized AuNRs and are well tolerated in vivo. Furthermore, they have high near‐infrared (NIR) absorbance and produce large amounts of heat under NIR illumination, hence such particles are well suited for plasmonic medical applications. Phospholipids offer a robust, inexpensive, and facile method for the displacement of the toxic surfactant cetyltrimethylammonium bromide (CTAB) from gold nanorods (AuNRs). Removal of CTAB is of considerable importance for the biological application of AuNRs. Phospholipid AuNRs demonstrated superior stability compared to CTAB and polyelectrolyte functionalizations. Both in vitro and in vivo models demonstrated that they are highly biocompatible.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202006797</identifier><identifier>PMID: 33682366</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Biomedical materials ; Cetyltrimethylammonium bromide ; Gold ; gold nanorods ; in vivo ; In vivo methods and tests ; Nanorods ; Nanotechnology ; NMR spectroscopy ; Phospholipids ; Polyelectrolytes ; Raman spectroscopy ; Spectrum analysis ; stability</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (13), p.e2006797-n/a</ispartof><rights>2021 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4797-1624afc2e12291ecb237aded362967b594fbb3e1953759834c900e20915222223</citedby><cites>FETCH-LOGICAL-c4797-1624afc2e12291ecb237aded362967b594fbb3e1953759834c900e20915222223</cites><orcidid>0000-0001-5466-6447 ; 0000-0002-0716-3692 ; 0000-0001-6489-9578 ; 0000-0002-1627-6058 ; 0000-0001-9425-720X ; 0000-0002-3858-6073 ; 0000-0002-9166-6662 ; 0000-0002-4028-2124 ; 0000-0002-0112-8626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202006797$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202006797$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33682366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roach, Lucien</creatorcontrib><creatorcontrib>Booth, Mary E.</creatorcontrib><creatorcontrib>Ingram, Nicola</creatorcontrib><creatorcontrib>Paterson, Daniel A.</creatorcontrib><creatorcontrib>Batchelor, Damien V. B.</creatorcontrib><creatorcontrib>Moorcroft, Samuel C. T.</creatorcontrib><creatorcontrib>Bushby, Richard J.</creatorcontrib><creatorcontrib>Critchley, Kevin</creatorcontrib><creatorcontrib>Coletta, P. Louise</creatorcontrib><creatorcontrib>Evans, Stephen D.</creatorcontrib><title>Evaluating Phospholipid‐Functionalized Gold Nanorods for In Vivo Applications</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Gold nanorods (AuNRs) have attracted a great deal of attention due to their potential for use in a wide range of biomedical applications. However, their production typically requires the use of the relatively toxic cationic surfactant cetyltrimethylammonium bromide (CTAB) leading to continued demand for protocols to detoxify them for in vivo applications. In this study, a robust and facile protocol for the displacement of CTAB from the surface of AuNRs using phospholipids is presented. After the displacement, CTAB is not detectable by NMR spectroscopy, surface‐enhanced Raman spectroscopy, or using pH‐dependent ζ‐potential measurements. The phospholipid functionalized AuNRs demonstrated superior stability and biocompatibility (IC50 &gt; 200 µg mL−1) compared to both CTAB and polyelectrolyte functionalized AuNRs and are well tolerated in vivo. Furthermore, they have high near‐infrared (NIR) absorbance and produce large amounts of heat under NIR illumination, hence such particles are well suited for plasmonic medical applications. Phospholipids offer a robust, inexpensive, and facile method for the displacement of the toxic surfactant cetyltrimethylammonium bromide (CTAB) from gold nanorods (AuNRs). Removal of CTAB is of considerable importance for the biological application of AuNRs. Phospholipid AuNRs demonstrated superior stability compared to CTAB and polyelectrolyte functionalizations. Both in vitro and in vivo models demonstrated that they are highly biocompatible.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Gold</subject><subject>gold nanorods</subject><subject>in vivo</subject><subject>In vivo methods and tests</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>NMR spectroscopy</subject><subject>Phospholipids</subject><subject>Polyelectrolytes</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>stability</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL1OwzAURi0EoqWwMqJIzCn2deLUY1W1pVKgSPyslpM41JUbh7gpKhOPwDPyJCRqKSN3uXc499Ong9AlwX2CMdy4lTF9wIAxi3h0hLqEEeqzAfDjw01wB505t8SYEgiiU9ShtCEoY100H2-kqeVaF6_ew8K6cmGNLnX2_fk1qYt0rW0hjf5QmTe1JvPuZWErmzkvt5U3K7wXvbHesCyNTmXLunN0kkvj1MV-99DzZPw0uvXj-XQ2GsZ-GjQ9fcIgkHkKigBwotIEaCQzlVEGnEVJyIM8SagiPKRRyAc0SDnGCjAnIbRDe-h6l1tW9q1Wbi2Wtq6ark5AiDlAwDBrqP6OSivrXKVyUVZ6JautIFi0_kTrTxz8NQ9X-9g6WansgP8KawC-A961Udt_4sTjXRz_hf8AUpJ8qQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Roach, Lucien</creator><creator>Booth, Mary E.</creator><creator>Ingram, Nicola</creator><creator>Paterson, Daniel A.</creator><creator>Batchelor, Damien V. B.</creator><creator>Moorcroft, Samuel C. T.</creator><creator>Bushby, Richard J.</creator><creator>Critchley, Kevin</creator><creator>Coletta, P. Louise</creator><creator>Evans, Stephen D.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5466-6447</orcidid><orcidid>https://orcid.org/0000-0002-0716-3692</orcidid><orcidid>https://orcid.org/0000-0001-6489-9578</orcidid><orcidid>https://orcid.org/0000-0002-1627-6058</orcidid><orcidid>https://orcid.org/0000-0001-9425-720X</orcidid><orcidid>https://orcid.org/0000-0002-3858-6073</orcidid><orcidid>https://orcid.org/0000-0002-9166-6662</orcidid><orcidid>https://orcid.org/0000-0002-4028-2124</orcidid><orcidid>https://orcid.org/0000-0002-0112-8626</orcidid></search><sort><creationdate>20210401</creationdate><title>Evaluating Phospholipid‐Functionalized Gold Nanorods for In Vivo Applications</title><author>Roach, Lucien ; Booth, Mary E. ; Ingram, Nicola ; Paterson, Daniel A. ; Batchelor, Damien V. B. ; Moorcroft, Samuel C. T. ; Bushby, Richard J. ; Critchley, Kevin ; Coletta, P. Louise ; Evans, Stephen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4797-1624afc2e12291ecb237aded362967b594fbb3e1953759834c900e20915222223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Gold</topic><topic>gold nanorods</topic><topic>in vivo</topic><topic>In vivo methods and tests</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>NMR spectroscopy</topic><topic>Phospholipids</topic><topic>Polyelectrolytes</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roach, Lucien</creatorcontrib><creatorcontrib>Booth, Mary E.</creatorcontrib><creatorcontrib>Ingram, Nicola</creatorcontrib><creatorcontrib>Paterson, Daniel A.</creatorcontrib><creatorcontrib>Batchelor, Damien V. B.</creatorcontrib><creatorcontrib>Moorcroft, Samuel C. T.</creatorcontrib><creatorcontrib>Bushby, Richard J.</creatorcontrib><creatorcontrib>Critchley, Kevin</creatorcontrib><creatorcontrib>Coletta, P. Louise</creatorcontrib><creatorcontrib>Evans, Stephen D.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roach, Lucien</au><au>Booth, Mary E.</au><au>Ingram, Nicola</au><au>Paterson, Daniel A.</au><au>Batchelor, Damien V. B.</au><au>Moorcroft, Samuel C. T.</au><au>Bushby, Richard J.</au><au>Critchley, Kevin</au><au>Coletta, P. Louise</au><au>Evans, Stephen D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Phospholipid‐Functionalized Gold Nanorods for In Vivo Applications</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>17</volume><issue>13</issue><spage>e2006797</spage><epage>n/a</epage><pages>e2006797-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Gold nanorods (AuNRs) have attracted a great deal of attention due to their potential for use in a wide range of biomedical applications. However, their production typically requires the use of the relatively toxic cationic surfactant cetyltrimethylammonium bromide (CTAB) leading to continued demand for protocols to detoxify them for in vivo applications. In this study, a robust and facile protocol for the displacement of CTAB from the surface of AuNRs using phospholipids is presented. After the displacement, CTAB is not detectable by NMR spectroscopy, surface‐enhanced Raman spectroscopy, or using pH‐dependent ζ‐potential measurements. The phospholipid functionalized AuNRs demonstrated superior stability and biocompatibility (IC50 &gt; 200 µg mL−1) compared to both CTAB and polyelectrolyte functionalized AuNRs and are well tolerated in vivo. Furthermore, they have high near‐infrared (NIR) absorbance and produce large amounts of heat under NIR illumination, hence such particles are well suited for plasmonic medical applications. Phospholipids offer a robust, inexpensive, and facile method for the displacement of the toxic surfactant cetyltrimethylammonium bromide (CTAB) from gold nanorods (AuNRs). Removal of CTAB is of considerable importance for the biological application of AuNRs. Phospholipid AuNRs demonstrated superior stability compared to CTAB and polyelectrolyte functionalizations. Both in vitro and in vivo models demonstrated that they are highly biocompatible.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33682366</pmid><doi>10.1002/smll.202006797</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5466-6447</orcidid><orcidid>https://orcid.org/0000-0002-0716-3692</orcidid><orcidid>https://orcid.org/0000-0001-6489-9578</orcidid><orcidid>https://orcid.org/0000-0002-1627-6058</orcidid><orcidid>https://orcid.org/0000-0001-9425-720X</orcidid><orcidid>https://orcid.org/0000-0002-3858-6073</orcidid><orcidid>https://orcid.org/0000-0002-9166-6662</orcidid><orcidid>https://orcid.org/0000-0002-4028-2124</orcidid><orcidid>https://orcid.org/0000-0002-0112-8626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (13), p.e2006797-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2509224606
source Wiley Online Library Journals Frontfile Complete
subjects Biocompatibility
Biomedical materials
Cetyltrimethylammonium bromide
Gold
gold nanorods
in vivo
In vivo methods and tests
Nanorods
Nanotechnology
NMR spectroscopy
Phospholipids
Polyelectrolytes
Raman spectroscopy
Spectrum analysis
stability
title Evaluating Phospholipid‐Functionalized Gold Nanorods for In Vivo Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Phospholipid%E2%80%90Functionalized%20Gold%20Nanorods%20for%20In%20Vivo%20Applications&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Roach,%20Lucien&rft.date=2021-04-01&rft.volume=17&rft.issue=13&rft.spage=e2006797&rft.epage=n/a&rft.pages=e2006797-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202006797&rft_dat=%3Cproquest_cross%3E2509224606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509224606&rft_id=info:pmid/33682366&rfr_iscdi=true