Temperature‐Controlled Optical Activity and Negative Refractive Index
Chiral media exhibit optical activity, which manifests itself as differential retardation and attenuation of circularly polarized electromagnetic waves of opposite handedness. This effect can be described by different refractive indices for left‐ and right‐handed waves and yields a negative index in...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-04, Vol.31 (14), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Liu, Meng Plum, Eric Li, Hua Li, Shaoxian Xu, Quan Zhang, Xueqian Zhang, Caihong Zou, Chongwen Jin, Biaobing Han, Jiaguang Zhang, Weili |
description | Chiral media exhibit optical activity, which manifests itself as differential retardation and attenuation of circularly polarized electromagnetic waves of opposite handedness. This effect can be described by different refractive indices for left‐ and right‐handed waves and yields a negative index in extreme cases. Here, active control of chirality, optical activity, and refractive index is demonstrated. These phenomena are observed in a terahertz metamaterial based on 3D‐chiral metallic resonators and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced optical activity and a negative refractive index at room temperature when vanadium dioxide is in its insulating phase. Upon heating, the insulator‐to‐metal phase transition of vanadium dioxide effectively renders the structure achiral, resulting in absence of optical activity and a positive refractive index. The origin of the structure's chiral response is traced to magnetic coupling between front and back of the structure, whereas the temperature‐controlled chiral‐to‐achiral transition is found to correspond to a transition from magnetic to electric dipole excitations. The use of a fourfold rotationally symmetric design avoids linear birefringence and dichroism, allowing such a structure to operate as tunable polarization rotator, adjustable linear polarization converter, and switchable circular polarizer.
Phase transitions enable active control over the symmetry of matter. The metal‐to‐insulator transition of vanadium dioxide is exploited to switch an artificial material between chiral and achiral states. The metamaterial's chiral‐to‐achiral transition controls its electromagnetic properties, where optical activity is turned on/off and the refractive index changes between negative and positive values. |
doi_str_mv | 10.1002/adfm.202010249 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509224123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509224123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-9fdb9dd59a81499f06aeaef3d02b2eabd1dc182ab776ebbfdb9397223cfa59c83</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavngOeW3dn87XHUrUWqgWp4G2Z7M5KSprETar25k_wN_pLTK3Uo6d5B553Bh7GzgUfCs7hEq1bDYEDFxxCdcB6IhbxQHJID_dZPB2zk6ZZci6SRIY9NlnQqiaP7drT18fnuCpbXxUF2WBet7nBIhiZNn_N202ApQ3u6Rm7lYIHch7NT5yWlt5P2ZHDoqGz39lnjzfXi_HtYDafTMej2cDIKFED5WymrI0UpiJUyvEYCclJyyEDwswKa0QKmCVJTFm2paVKAKRxGCmTyj672N2tffWypqbVy2rty-6lhogrgFCA7KjhjjK-ahpPTtc-X6HfaMH1VpbeytJ7WV1B7QpveUGbf2g9urq5--t-A1tQcBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509224123</pqid></control><display><type>article</type><title>Temperature‐Controlled Optical Activity and Negative Refractive Index</title><source>Access via Wiley Online Library</source><creator>Liu, Meng ; Plum, Eric ; Li, Hua ; Li, Shaoxian ; Xu, Quan ; Zhang, Xueqian ; Zhang, Caihong ; Zou, Chongwen ; Jin, Biaobing ; Han, Jiaguang ; Zhang, Weili</creator><creatorcontrib>Liu, Meng ; Plum, Eric ; Li, Hua ; Li, Shaoxian ; Xu, Quan ; Zhang, Xueqian ; Zhang, Caihong ; Zou, Chongwen ; Jin, Biaobing ; Han, Jiaguang ; Zhang, Weili</creatorcontrib><description>Chiral media exhibit optical activity, which manifests itself as differential retardation and attenuation of circularly polarized electromagnetic waves of opposite handedness. This effect can be described by different refractive indices for left‐ and right‐handed waves and yields a negative index in extreme cases. Here, active control of chirality, optical activity, and refractive index is demonstrated. These phenomena are observed in a terahertz metamaterial based on 3D‐chiral metallic resonators and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced optical activity and a negative refractive index at room temperature when vanadium dioxide is in its insulating phase. Upon heating, the insulator‐to‐metal phase transition of vanadium dioxide effectively renders the structure achiral, resulting in absence of optical activity and a positive refractive index. The origin of the structure's chiral response is traced to magnetic coupling between front and back of the structure, whereas the temperature‐controlled chiral‐to‐achiral transition is found to correspond to a transition from magnetic to electric dipole excitations. The use of a fourfold rotationally symmetric design avoids linear birefringence and dichroism, allowing such a structure to operate as tunable polarization rotator, adjustable linear polarization converter, and switchable circular polarizer.
Phase transitions enable active control over the symmetry of matter. The metal‐to‐insulator transition of vanadium dioxide is exploited to switch an artificial material between chiral and achiral states. The metamaterial's chiral‐to‐achiral transition controls its electromagnetic properties, where optical activity is turned on/off and the refractive index changes between negative and positive values.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202010249</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Active control ; Birefringence ; Chirality ; Circular polarization ; Converters ; Dichroism ; Electric dipoles ; Electromagnetic radiation ; Inclusions ; Linear polarization ; Materials science ; Metamaterials ; negative refractive index ; Optical activity ; phase transition ; Phase transitions ; Polarizers ; Refractivity ; Room temperature ; Vanadium dioxide ; Wave attenuation</subject><ispartof>Advanced functional materials, 2021-04, Vol.31 (14), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-9fdb9dd59a81499f06aeaef3d02b2eabd1dc182ab776ebbfdb9397223cfa59c83</citedby><cites>FETCH-LOGICAL-c3579-9fdb9dd59a81499f06aeaef3d02b2eabd1dc182ab776ebbfdb9397223cfa59c83</cites><orcidid>0000-0002-1552-1840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202010249$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202010249$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Meng</creatorcontrib><creatorcontrib>Plum, Eric</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Li, Shaoxian</creatorcontrib><creatorcontrib>Xu, Quan</creatorcontrib><creatorcontrib>Zhang, Xueqian</creatorcontrib><creatorcontrib>Zhang, Caihong</creatorcontrib><creatorcontrib>Zou, Chongwen</creatorcontrib><creatorcontrib>Jin, Biaobing</creatorcontrib><creatorcontrib>Han, Jiaguang</creatorcontrib><creatorcontrib>Zhang, Weili</creatorcontrib><title>Temperature‐Controlled Optical Activity and Negative Refractive Index</title><title>Advanced functional materials</title><description>Chiral media exhibit optical activity, which manifests itself as differential retardation and attenuation of circularly polarized electromagnetic waves of opposite handedness. This effect can be described by different refractive indices for left‐ and right‐handed waves and yields a negative index in extreme cases. Here, active control of chirality, optical activity, and refractive index is demonstrated. These phenomena are observed in a terahertz metamaterial based on 3D‐chiral metallic resonators and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced optical activity and a negative refractive index at room temperature when vanadium dioxide is in its insulating phase. Upon heating, the insulator‐to‐metal phase transition of vanadium dioxide effectively renders the structure achiral, resulting in absence of optical activity and a positive refractive index. The origin of the structure's chiral response is traced to magnetic coupling between front and back of the structure, whereas the temperature‐controlled chiral‐to‐achiral transition is found to correspond to a transition from magnetic to electric dipole excitations. The use of a fourfold rotationally symmetric design avoids linear birefringence and dichroism, allowing such a structure to operate as tunable polarization rotator, adjustable linear polarization converter, and switchable circular polarizer.
Phase transitions enable active control over the symmetry of matter. The metal‐to‐insulator transition of vanadium dioxide is exploited to switch an artificial material between chiral and achiral states. The metamaterial's chiral‐to‐achiral transition controls its electromagnetic properties, where optical activity is turned on/off and the refractive index changes between negative and positive values.</description><subject>Active control</subject><subject>Birefringence</subject><subject>Chirality</subject><subject>Circular polarization</subject><subject>Converters</subject><subject>Dichroism</subject><subject>Electric dipoles</subject><subject>Electromagnetic radiation</subject><subject>Inclusions</subject><subject>Linear polarization</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>negative refractive index</subject><subject>Optical activity</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Polarizers</subject><subject>Refractivity</subject><subject>Room temperature</subject><subject>Vanadium dioxide</subject><subject>Wave attenuation</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1Lw0AQhhdRsFavngOeW3dn87XHUrUWqgWp4G2Z7M5KSprETar25k_wN_pLTK3Uo6d5B553Bh7GzgUfCs7hEq1bDYEDFxxCdcB6IhbxQHJID_dZPB2zk6ZZci6SRIY9NlnQqiaP7drT18fnuCpbXxUF2WBet7nBIhiZNn_N202ApQ3u6Rm7lYIHch7NT5yWlt5P2ZHDoqGz39lnjzfXi_HtYDafTMej2cDIKFED5WymrI0UpiJUyvEYCclJyyEDwswKa0QKmCVJTFm2paVKAKRxGCmTyj672N2tffWypqbVy2rty-6lhogrgFCA7KjhjjK-ahpPTtc-X6HfaMH1VpbeytJ7WV1B7QpveUGbf2g9urq5--t-A1tQcBw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Liu, Meng</creator><creator>Plum, Eric</creator><creator>Li, Hua</creator><creator>Li, Shaoxian</creator><creator>Xu, Quan</creator><creator>Zhang, Xueqian</creator><creator>Zhang, Caihong</creator><creator>Zou, Chongwen</creator><creator>Jin, Biaobing</creator><creator>Han, Jiaguang</creator><creator>Zhang, Weili</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1552-1840</orcidid></search><sort><creationdate>20210401</creationdate><title>Temperature‐Controlled Optical Activity and Negative Refractive Index</title><author>Liu, Meng ; Plum, Eric ; Li, Hua ; Li, Shaoxian ; Xu, Quan ; Zhang, Xueqian ; Zhang, Caihong ; Zou, Chongwen ; Jin, Biaobing ; Han, Jiaguang ; Zhang, Weili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-9fdb9dd59a81499f06aeaef3d02b2eabd1dc182ab776ebbfdb9397223cfa59c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Birefringence</topic><topic>Chirality</topic><topic>Circular polarization</topic><topic>Converters</topic><topic>Dichroism</topic><topic>Electric dipoles</topic><topic>Electromagnetic radiation</topic><topic>Inclusions</topic><topic>Linear polarization</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>negative refractive index</topic><topic>Optical activity</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Polarizers</topic><topic>Refractivity</topic><topic>Room temperature</topic><topic>Vanadium dioxide</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Meng</creatorcontrib><creatorcontrib>Plum, Eric</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Li, Shaoxian</creatorcontrib><creatorcontrib>Xu, Quan</creatorcontrib><creatorcontrib>Zhang, Xueqian</creatorcontrib><creatorcontrib>Zhang, Caihong</creatorcontrib><creatorcontrib>Zou, Chongwen</creatorcontrib><creatorcontrib>Jin, Biaobing</creatorcontrib><creatorcontrib>Han, Jiaguang</creatorcontrib><creatorcontrib>Zhang, Weili</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Meng</au><au>Plum, Eric</au><au>Li, Hua</au><au>Li, Shaoxian</au><au>Xu, Quan</au><au>Zhang, Xueqian</au><au>Zhang, Caihong</au><au>Zou, Chongwen</au><au>Jin, Biaobing</au><au>Han, Jiaguang</au><au>Zhang, Weili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature‐Controlled Optical Activity and Negative Refractive Index</atitle><jtitle>Advanced functional materials</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>14</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Chiral media exhibit optical activity, which manifests itself as differential retardation and attenuation of circularly polarized electromagnetic waves of opposite handedness. This effect can be described by different refractive indices for left‐ and right‐handed waves and yields a negative index in extreme cases. Here, active control of chirality, optical activity, and refractive index is demonstrated. These phenomena are observed in a terahertz metamaterial based on 3D‐chiral metallic resonators and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced optical activity and a negative refractive index at room temperature when vanadium dioxide is in its insulating phase. Upon heating, the insulator‐to‐metal phase transition of vanadium dioxide effectively renders the structure achiral, resulting in absence of optical activity and a positive refractive index. The origin of the structure's chiral response is traced to magnetic coupling between front and back of the structure, whereas the temperature‐controlled chiral‐to‐achiral transition is found to correspond to a transition from magnetic to electric dipole excitations. The use of a fourfold rotationally symmetric design avoids linear birefringence and dichroism, allowing such a structure to operate as tunable polarization rotator, adjustable linear polarization converter, and switchable circular polarizer.
Phase transitions enable active control over the symmetry of matter. The metal‐to‐insulator transition of vanadium dioxide is exploited to switch an artificial material between chiral and achiral states. The metamaterial's chiral‐to‐achiral transition controls its electromagnetic properties, where optical activity is turned on/off and the refractive index changes between negative and positive values.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202010249</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1552-1840</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-04, Vol.31 (14), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2509224123 |
source | Access via Wiley Online Library |
subjects | Active control Birefringence Chirality Circular polarization Converters Dichroism Electric dipoles Electromagnetic radiation Inclusions Linear polarization Materials science Metamaterials negative refractive index Optical activity phase transition Phase transitions Polarizers Refractivity Room temperature Vanadium dioxide Wave attenuation |
title | Temperature‐Controlled Optical Activity and Negative Refractive Index |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%E2%80%90Controlled%20Optical%20Activity%20and%20Negative%20Refractive%20Index&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Meng&rft.date=2021-04-01&rft.volume=31&rft.issue=14&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202010249&rft_dat=%3Cproquest_cross%3E2509224123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509224123&rft_id=info:pmid/&rfr_iscdi=true |