Temperature‐Controlled Optical Activity and Negative Refractive Index

Chiral media exhibit optical activity, which manifests itself as differential retardation and attenuation of circularly polarized electromagnetic waves of opposite handedness. This effect can be described by different refractive indices for left‐ and right‐handed waves and yields a negative index in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-04, Vol.31 (14), p.n/a
Hauptverfasser: Liu, Meng, Plum, Eric, Li, Hua, Li, Shaoxian, Xu, Quan, Zhang, Xueqian, Zhang, Caihong, Zou, Chongwen, Jin, Biaobing, Han, Jiaguang, Zhang, Weili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page
container_title Advanced functional materials
container_volume 31
creator Liu, Meng
Plum, Eric
Li, Hua
Li, Shaoxian
Xu, Quan
Zhang, Xueqian
Zhang, Caihong
Zou, Chongwen
Jin, Biaobing
Han, Jiaguang
Zhang, Weili
description Chiral media exhibit optical activity, which manifests itself as differential retardation and attenuation of circularly polarized electromagnetic waves of opposite handedness. This effect can be described by different refractive indices for left‐ and right‐handed waves and yields a negative index in extreme cases. Here, active control of chirality, optical activity, and refractive index is demonstrated. These phenomena are observed in a terahertz metamaterial based on 3D‐chiral metallic resonators and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced optical activity and a negative refractive index at room temperature when vanadium dioxide is in its insulating phase. Upon heating, the insulator‐to‐metal phase transition of vanadium dioxide effectively renders the structure achiral, resulting in absence of optical activity and a positive refractive index. The origin of the structure's chiral response is traced to magnetic coupling between front and back of the structure, whereas the temperature‐controlled chiral‐to‐achiral transition is found to correspond to a transition from magnetic to electric dipole excitations. The use of a fourfold rotationally symmetric design avoids linear birefringence and dichroism, allowing such a structure to operate as tunable polarization rotator, adjustable linear polarization converter, and switchable circular polarizer. Phase transitions enable active control over the symmetry of matter. The metal‐to‐insulator transition of vanadium dioxide is exploited to switch an artificial material between chiral and achiral states. The metamaterial's chiral‐to‐achiral transition controls its electromagnetic properties, where optical activity is turned on/off and the refractive index changes between negative and positive values.
doi_str_mv 10.1002/adfm.202010249
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509224123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509224123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-9fdb9dd59a81499f06aeaef3d02b2eabd1dc182ab776ebbfdb9397223cfa59c83</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavngOeW3dn87XHUrUWqgWp4G2Z7M5KSprETar25k_wN_pLTK3Uo6d5B553Bh7GzgUfCs7hEq1bDYEDFxxCdcB6IhbxQHJID_dZPB2zk6ZZci6SRIY9NlnQqiaP7drT18fnuCpbXxUF2WBet7nBIhiZNn_N202ApQ3u6Rm7lYIHch7NT5yWlt5P2ZHDoqGz39lnjzfXi_HtYDafTMej2cDIKFED5WymrI0UpiJUyvEYCclJyyEDwswKa0QKmCVJTFm2paVKAKRxGCmTyj672N2tffWypqbVy2rty-6lhogrgFCA7KjhjjK-ahpPTtc-X6HfaMH1VpbeytJ7WV1B7QpveUGbf2g9urq5--t-A1tQcBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509224123</pqid></control><display><type>article</type><title>Temperature‐Controlled Optical Activity and Negative Refractive Index</title><source>Access via Wiley Online Library</source><creator>Liu, Meng ; Plum, Eric ; Li, Hua ; Li, Shaoxian ; Xu, Quan ; Zhang, Xueqian ; Zhang, Caihong ; Zou, Chongwen ; Jin, Biaobing ; Han, Jiaguang ; Zhang, Weili</creator><creatorcontrib>Liu, Meng ; Plum, Eric ; Li, Hua ; Li, Shaoxian ; Xu, Quan ; Zhang, Xueqian ; Zhang, Caihong ; Zou, Chongwen ; Jin, Biaobing ; Han, Jiaguang ; Zhang, Weili</creatorcontrib><description>Chiral media exhibit optical activity, which manifests itself as differential retardation and attenuation of circularly polarized electromagnetic waves of opposite handedness. This effect can be described by different refractive indices for left‐ and right‐handed waves and yields a negative index in extreme cases. Here, active control of chirality, optical activity, and refractive index is demonstrated. These phenomena are observed in a terahertz metamaterial based on 3D‐chiral metallic resonators and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced optical activity and a negative refractive index at room temperature when vanadium dioxide is in its insulating phase. Upon heating, the insulator‐to‐metal phase transition of vanadium dioxide effectively renders the structure achiral, resulting in absence of optical activity and a positive refractive index. The origin of the structure's chiral response is traced to magnetic coupling between front and back of the structure, whereas the temperature‐controlled chiral‐to‐achiral transition is found to correspond to a transition from magnetic to electric dipole excitations. The use of a fourfold rotationally symmetric design avoids linear birefringence and dichroism, allowing such a structure to operate as tunable polarization rotator, adjustable linear polarization converter, and switchable circular polarizer. Phase transitions enable active control over the symmetry of matter. The metal‐to‐insulator transition of vanadium dioxide is exploited to switch an artificial material between chiral and achiral states. The metamaterial's chiral‐to‐achiral transition controls its electromagnetic properties, where optical activity is turned on/off and the refractive index changes between negative and positive values.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202010249</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Active control ; Birefringence ; Chirality ; Circular polarization ; Converters ; Dichroism ; Electric dipoles ; Electromagnetic radiation ; Inclusions ; Linear polarization ; Materials science ; Metamaterials ; negative refractive index ; Optical activity ; phase transition ; Phase transitions ; Polarizers ; Refractivity ; Room temperature ; Vanadium dioxide ; Wave attenuation</subject><ispartof>Advanced functional materials, 2021-04, Vol.31 (14), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-9fdb9dd59a81499f06aeaef3d02b2eabd1dc182ab776ebbfdb9397223cfa59c83</citedby><cites>FETCH-LOGICAL-c3579-9fdb9dd59a81499f06aeaef3d02b2eabd1dc182ab776ebbfdb9397223cfa59c83</cites><orcidid>0000-0002-1552-1840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202010249$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202010249$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Meng</creatorcontrib><creatorcontrib>Plum, Eric</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Li, Shaoxian</creatorcontrib><creatorcontrib>Xu, Quan</creatorcontrib><creatorcontrib>Zhang, Xueqian</creatorcontrib><creatorcontrib>Zhang, Caihong</creatorcontrib><creatorcontrib>Zou, Chongwen</creatorcontrib><creatorcontrib>Jin, Biaobing</creatorcontrib><creatorcontrib>Han, Jiaguang</creatorcontrib><creatorcontrib>Zhang, Weili</creatorcontrib><title>Temperature‐Controlled Optical Activity and Negative Refractive Index</title><title>Advanced functional materials</title><description>Chiral media exhibit optical activity, which manifests itself as differential retardation and attenuation of circularly polarized electromagnetic waves of opposite handedness. This effect can be described by different refractive indices for left‐ and right‐handed waves and yields a negative index in extreme cases. Here, active control of chirality, optical activity, and refractive index is demonstrated. These phenomena are observed in a terahertz metamaterial based on 3D‐chiral metallic resonators and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced optical activity and a negative refractive index at room temperature when vanadium dioxide is in its insulating phase. Upon heating, the insulator‐to‐metal phase transition of vanadium dioxide effectively renders the structure achiral, resulting in absence of optical activity and a positive refractive index. The origin of the structure's chiral response is traced to magnetic coupling between front and back of the structure, whereas the temperature‐controlled chiral‐to‐achiral transition is found to correspond to a transition from magnetic to electric dipole excitations. The use of a fourfold rotationally symmetric design avoids linear birefringence and dichroism, allowing such a structure to operate as tunable polarization rotator, adjustable linear polarization converter, and switchable circular polarizer. Phase transitions enable active control over the symmetry of matter. The metal‐to‐insulator transition of vanadium dioxide is exploited to switch an artificial material between chiral and achiral states. The metamaterial's chiral‐to‐achiral transition controls its electromagnetic properties, where optical activity is turned on/off and the refractive index changes between negative and positive values.</description><subject>Active control</subject><subject>Birefringence</subject><subject>Chirality</subject><subject>Circular polarization</subject><subject>Converters</subject><subject>Dichroism</subject><subject>Electric dipoles</subject><subject>Electromagnetic radiation</subject><subject>Inclusions</subject><subject>Linear polarization</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>negative refractive index</subject><subject>Optical activity</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Polarizers</subject><subject>Refractivity</subject><subject>Room temperature</subject><subject>Vanadium dioxide</subject><subject>Wave attenuation</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1Lw0AQhhdRsFavngOeW3dn87XHUrUWqgWp4G2Z7M5KSprETar25k_wN_pLTK3Uo6d5B553Bh7GzgUfCs7hEq1bDYEDFxxCdcB6IhbxQHJID_dZPB2zk6ZZci6SRIY9NlnQqiaP7drT18fnuCpbXxUF2WBet7nBIhiZNn_N202ApQ3u6Rm7lYIHch7NT5yWlt5P2ZHDoqGz39lnjzfXi_HtYDafTMej2cDIKFED5WymrI0UpiJUyvEYCclJyyEDwswKa0QKmCVJTFm2paVKAKRxGCmTyj672N2tffWypqbVy2rty-6lhogrgFCA7KjhjjK-ahpPTtc-X6HfaMH1VpbeytJ7WV1B7QpveUGbf2g9urq5--t-A1tQcBw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Liu, Meng</creator><creator>Plum, Eric</creator><creator>Li, Hua</creator><creator>Li, Shaoxian</creator><creator>Xu, Quan</creator><creator>Zhang, Xueqian</creator><creator>Zhang, Caihong</creator><creator>Zou, Chongwen</creator><creator>Jin, Biaobing</creator><creator>Han, Jiaguang</creator><creator>Zhang, Weili</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1552-1840</orcidid></search><sort><creationdate>20210401</creationdate><title>Temperature‐Controlled Optical Activity and Negative Refractive Index</title><author>Liu, Meng ; Plum, Eric ; Li, Hua ; Li, Shaoxian ; Xu, Quan ; Zhang, Xueqian ; Zhang, Caihong ; Zou, Chongwen ; Jin, Biaobing ; Han, Jiaguang ; Zhang, Weili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-9fdb9dd59a81499f06aeaef3d02b2eabd1dc182ab776ebbfdb9397223cfa59c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Birefringence</topic><topic>Chirality</topic><topic>Circular polarization</topic><topic>Converters</topic><topic>Dichroism</topic><topic>Electric dipoles</topic><topic>Electromagnetic radiation</topic><topic>Inclusions</topic><topic>Linear polarization</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>negative refractive index</topic><topic>Optical activity</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Polarizers</topic><topic>Refractivity</topic><topic>Room temperature</topic><topic>Vanadium dioxide</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Meng</creatorcontrib><creatorcontrib>Plum, Eric</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Li, Shaoxian</creatorcontrib><creatorcontrib>Xu, Quan</creatorcontrib><creatorcontrib>Zhang, Xueqian</creatorcontrib><creatorcontrib>Zhang, Caihong</creatorcontrib><creatorcontrib>Zou, Chongwen</creatorcontrib><creatorcontrib>Jin, Biaobing</creatorcontrib><creatorcontrib>Han, Jiaguang</creatorcontrib><creatorcontrib>Zhang, Weili</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Meng</au><au>Plum, Eric</au><au>Li, Hua</au><au>Li, Shaoxian</au><au>Xu, Quan</au><au>Zhang, Xueqian</au><au>Zhang, Caihong</au><au>Zou, Chongwen</au><au>Jin, Biaobing</au><au>Han, Jiaguang</au><au>Zhang, Weili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature‐Controlled Optical Activity and Negative Refractive Index</atitle><jtitle>Advanced functional materials</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>14</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Chiral media exhibit optical activity, which manifests itself as differential retardation and attenuation of circularly polarized electromagnetic waves of opposite handedness. This effect can be described by different refractive indices for left‐ and right‐handed waves and yields a negative index in extreme cases. Here, active control of chirality, optical activity, and refractive index is demonstrated. These phenomena are observed in a terahertz metamaterial based on 3D‐chiral metallic resonators and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced optical activity and a negative refractive index at room temperature when vanadium dioxide is in its insulating phase. Upon heating, the insulator‐to‐metal phase transition of vanadium dioxide effectively renders the structure achiral, resulting in absence of optical activity and a positive refractive index. The origin of the structure's chiral response is traced to magnetic coupling between front and back of the structure, whereas the temperature‐controlled chiral‐to‐achiral transition is found to correspond to a transition from magnetic to electric dipole excitations. The use of a fourfold rotationally symmetric design avoids linear birefringence and dichroism, allowing such a structure to operate as tunable polarization rotator, adjustable linear polarization converter, and switchable circular polarizer. Phase transitions enable active control over the symmetry of matter. The metal‐to‐insulator transition of vanadium dioxide is exploited to switch an artificial material between chiral and achiral states. The metamaterial's chiral‐to‐achiral transition controls its electromagnetic properties, where optical activity is turned on/off and the refractive index changes between negative and positive values.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202010249</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1552-1840</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-04, Vol.31 (14), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2509224123
source Access via Wiley Online Library
subjects Active control
Birefringence
Chirality
Circular polarization
Converters
Dichroism
Electric dipoles
Electromagnetic radiation
Inclusions
Linear polarization
Materials science
Metamaterials
negative refractive index
Optical activity
phase transition
Phase transitions
Polarizers
Refractivity
Room temperature
Vanadium dioxide
Wave attenuation
title Temperature‐Controlled Optical Activity and Negative Refractive Index
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%E2%80%90Controlled%20Optical%20Activity%20and%20Negative%20Refractive%20Index&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Meng&rft.date=2021-04-01&rft.volume=31&rft.issue=14&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202010249&rft_dat=%3Cproquest_cross%3E2509224123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509224123&rft_id=info:pmid/&rfr_iscdi=true